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SUMMARY

Privacy preference signals are digital representations of how users want their
personal data to be processed. Due to the competing interests of users and
data processors, the adoption of such signals remains an unsolved problem
despite efforts dating back to the 1990s. The commencement of privacy laws
like the EU General Data Protection Regulation (GDPR) in 2018 prompted a
new wave of signals as internet firms are pushed to obtain user consent.

This thesis examines the emergence of this consent ecosystem, whose
standardized signals now govern many cookie dialogs on the web. Using cross-
sectional and longitudinal web measurements, we show which factors drive
signal adoption, quantify the impact of signals, and integrate these post-GDPR
developments into the wider history of privacy preference signals.

ZUSAMMENFASSUNG

Privacy Preference Signals sind die digitale Repräsentation der Datenschutzprä-
ferenzen eines Nutzers. Auf Grund der gegensätzlichen Interessen von Nutzern
und datenverarbeitenden Firmen bleibt die Einführung bzw. Befolgung solcher
Signale trotz Bemühungen seit den 1990er-Jahren ein ungelöstes Problem.
Das Inkrafttreten von Datenschutzbestimmungen wie der EU Datenschutz-
Grundverordnung (GDPR) in 2018 hat dabei eine neue Welle an Signalen
ausgelöst, da Firmen nun angehalten sind, die Einwilligung (Consent) von
Nutzern zur Datenverarbeitung einzuholen.

Diese Dissertation untersucht die Entstehung des Ökosystems um Con-
sent, dessen standardisierte Signale maßgeblichen Einfluss auf viele Cookie-
Dialoge im Internet haben. Basierend auf einmaligen und longitudinalen
Web-Messungen zeigt diese Arbeit, welche Faktoren die Einführung von Pri-
vacy Preference Signals beeinflussen, welche Auswirkungen das Senden dieser
Signale hat, und wie die Entwicklungen nach Inkrafttreten der GDPR im
historischen Kontext einzuordnen sind.

i



ii



ACKNOWLEDGEMENTS

Throughout my PhD, I have received a great deal of support from colleagues,
friends, and family members who accompanied me along the way. While it’s
impossible to list everyone, I would like to highlight a few people.

My journey towards a PhD started in 2013 when I reached out to Rainer
Böhme for my Bachelor thesis. A few emails were exchanged, meetings were
had, a thesis was written, and I somehow ended up with a position as a student
assistant in Münster. Already back then — being the young greenhorn in the
group — I received unparalleled support and mentorship from Rainer, which
made it easy to follow the group to Innsbruck to pursue PhD in 2017. Over
here, I distinctly remember Rainer getting up at 5:30 am on a Saturday to
help me polish my first paper for a 7:00 am deadline (I pulled an all-nighter).
I hope my time management has gotten a bit better, but I owe you my sincere
gratitude for your continuous and unwavering support. I pledge that there are
no scaleboxes in this thesis and everything has been TikZed.

Staying in the group, I am incredibly thankful for the collaboration with
Daniel Woods, with whom I had the pleasure to first share a flat and then
form a very successful and symbiotic paper machine. Thank you, Daniel! Of
course, my gratefulness extends to all other members of the Security & Privacy
Lab. It’s been a privilege to be among such a fantastic group of friends, both
at work and outside of work.

Outside of Innsbruck, I’d like to thank Aldo Cortesi for his terrific mentor-
ship, which even predates Rainer’s involvement (my first mitmproxy commit
was in 2012). Netograph’s data feeds have been an invaluable foundation for
much of the research in this thesis. Thank you, Aldo!

Crossing the Pacific, we arrive at the Good family, my second home in
California. Yay and Nathan, thank you for welcoming me into your family
during my semester abroad in 2016 and the close friendship thereafter! Building
the Berkeley network course in 2018 surely has not accelerated my thesis
progress, but it certainly was a part of my PhD journey I do not wish to miss.

Turning back home, all of this wouldn’t have been possible without the
immense support, guidance, and encouragement from my family. Thank you,
Mom and Dad, for raising me to always be curious, ambitious, confident, and
humble. You did a fantastic job.

Last but not least, I wouldn’t be finished with my PhD yet were it not for a
friendly competition on who finishes their thesis first. Thank you, Andrea, for
being such a wonderful partner. Winning this contest counts little compared
to having you in my life.

iii



iv



CONTENTS

i Research Summary

1 Introduction 3

1.1 The History of Privacy Preference Signals . . . . . . . . . . . . 3

1.2 GDPR and the Rise of Consent Management . . . . . . . . . . 5

1.3 The Effect of Privacy Preference Signals . . . . . . . . . . . . . 7

1.4 Conflicting Signals . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Summary of Papers 11

3 Conclusion 17

References 19

Appendix 23

ii Papers

4 Privacy Preference Signals: Past, Present and Future 27

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Measuring the Emergence of Consent Management on the Web 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Measurement Approach . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

v



CONTENTS

6 Measuring the Impact of Privacy Preference Signals 107
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Conflicting Privacy Preference Signals in the Wild 133
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

vi



Part I

RESEARCH SUMMARY





1
INTRODUCTION

GDPR
CCPA

1997 2000 2005 2010 2015 2020

P3P
DNT
TCF
GPC

Figure 1: Attempts to standardize privacy preference signals reach back to 1997.
A new wave of signals was sparked by EU and US legislation in 2018. Figure adapted
from [1, Figure 1].

1.1 the history of privacy preference signals

In 1890, Samuel Warren and Louis Brandeis advocated for the “right to be let
alone” in face of increasingly inquisitive journalism: “The press is overstepping
in every direction the obvious bounds of propriety and of decency. [ . . . ] To
satisfy a prurient taste the details of sexual relations are spread broadcast in
the columns of the daily papers.” [2]. Their essay — The Right to Privacy,
published in the 1890 Harvard Law Review — is now widely credited with
the invention of privacy as a legal concept [3]. 77 years later, Alan Westin’s
Privacy and Freedom expanded the definition of privacy as a legal right for use
in modern times [4]. Already in 1965, two years before the first ARPANET
computers were connected, Westin warned how the amassing of personal data
into gigantic databases threatens individuals [5]. Of course, his definition of
privacy as control over personal information has become ever more important
with the emergence of the internet. Starting with the standardization of
cookies in 1997 [6], persistent identifiers that are tied to extensive advertising
profiles have become an integral part of the web.

Privacy preference signals are digital representations of how users want
their personal data to be processed. These signals vary from binary “Do Not
Track” signals through to more complex expressions in cookie consent dialogs.
While users may send particular signals to limit how their own personal data
is processed, companies may also proactively collect privacy preferences to
legitimize their own data processing (as it may be required by law). In 2022,
the most common manifestation of this are modern cookie banners and consent
dialogs (see Appendix A for examples). However, the efforts to provide internet
users with means to express their privacy preferences go back to at least the
Platform for Privacy Preferences (P3P) (see Figure 1). P3P was standardized
by the World Wide Web Consortium (W3C) in 2002, was adopted by around
20k websites [7], but eventually succumbed to a slow death starting in 2007.
Reasons for its decline included the lack of consequences for false reporting of
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P3P DNT TCF GPC

Proposed 1997 2009 2018 2020
Legal Basis – – GDPR CCPA
Design
Signal complex 1 bit complex 1 bit

Impl.
Policy
XML

HTTP
Header

Consent
Dialog

HTTP
Header

Adoption
Websites > 20k [11, 12, 7, 13] > 9 [14] 8 265* ?
AdTech > 11 [7] ≈ 0 [14] 684* ?
Browsers

?=unknown, = compat. with exist. tech., *= own measurements, see Sec. 4.5

Table 1: Different privacy signals vary in their design: While P3P and TCF propose
complex frameworks with fine-grained privacy settings, DNT and GPC simplify user
choice to a single bit. Table adapted from [1, Table 1].

privacy practices as well as the complexity of the specification [8]. Another
W3C working group was then formed to specify the Do Not Track (DNT)
standard [9], which was conceptually much simpler: Users communicated their
desire that no data regarding their activity should be collected or shared using
a single-bit HTTP header (see Figure 1). Again, the standard failed as the
working group was closed before completion, citing a lack of planned support
across “the ecosystem at large” [10].

DNT’s proponents found out the hard way that adopting a privacy prefer-
ence signal is a coordination problem: While browsers (user agents) adopted
P3P and DNT, vendors profiting from personal data were not incentivized to
adopt these standards and respect the wishes expressed by data subjects [15].
If we want to understand why current privacy preference signals may succeed
or fail, we thus need to look at why previous approaches failed. In the first
paper in this thesis (Chapter 4), I provide a history of the privacy preference
signals introduced here and analyze how the more recent TCF signal – subject
of the next subsections – achieved more widespread adoption.

Skeptics will argue that privacy preference signals only provide soft privacy,
i.e., they do not put any technical measures in place that could stop the
receiving party from disregarding users’ preferences and processing personal
data nonetheless. Users must trust the signal’s recipient to be compliant and
stop processing personal data. In contrast, hard privacy technologies such as
encryption would provide technical guarantees that user data is protected [16].
When looking at past behavior of AdTech companies, we will however find that
soft privacy may not be the toothless tiger some critics make it out to be [17].
With both P3P and DNT, AdTech companies proactively invested resources in
the W3C working groups to influence the respective signal design. The DNT
mailing list archives hold more than 11,000 messages [18]. As the standard
started to pose a threat to AdTech — Microsoft announced it would be turned
on by default —, the Interactive Advertising Bureau (IAB), a coalition of
advertisers, immediately withdrew from the working group to delegitimize the

4



1.2 gdpr and the rise of consent management

User Publisher

CMP

Ad-Tech VendorsGVL

IAB

visit
request consent embed embed

provide
vendor data forward

consent

declare
purposes

register
manage

Figure 2: Surfacing the web’s new compliance engine: Publishers embed Consent
Management Providers (CMPs), which display consent prompts to users and forward
consent decisions to ad-tech vendors. In the background, the Interactive Advertising
Bureau (IAB) orchestrates this through its Transparency and Consent Framework
(TCF). Figure adapted from [24, Figure 2].

standardization process [15]. TCF was developed via a working group that is
managed by the IAB and lists 156 participating organizations [19]. On the
opposing side, privacy advocates have taken the trouble to file more than 500
complaints against misleading cookie banners in 2021 [20]. On a policy level,
the design of privacy preference signals has been subject to committee hearings
at the US Congress [21, 22] and the EU parliament [23]. All this speaks to
the practical importance of soft privacy and privacy preference signals.

1.2 gdpr and the rise of consent management

The passage of the EU General Data Protection Regulation (GDPR) and the
California Consumer Privacy Act (CCPA) set off a second wave of privacy
preference signals starting in 2018. In the EU, the GDPR now establishes that
websites need their users’ “freely given, specific, informed and unambiguous”
consent for certain data processing purposes [25]. In California, CCPA now
requires websites to allow users to opt-out of the sale of their personal data [26].
Virginia’s Consumer Data Protection Act, set to go into effect in 2023, will
require businesses to obtain opt-in consent to process sensitive data [27].
Leaving the Western Hemisphere, Brazil’s Data Protection Bill of Law already
establishes regulations similar to the GDPR in Brazil [28]. So does Jamaica’s
Data Protection Act of 2020 [29]. To comply with these laws, technical
infrastructure to acquire consent must be designed so that websites and
AdTech vendors can continue to process personal data.

In the past, each website offered a unique privacy policy and cookie no-
tice [30, 31]. This diversity overwhelmed users who could not commit hundreds
of hours to read each policy [32, 33] nor navigate novel interface designs with-
out making errors [34]. While P3P and DNT would have provided common
browser interfaces to remedy the problem, AdTech resisted adopting a standard

5
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2018 →
J F M A M J J A S O N D

2019 →
J F M A M J J A S O N D

2020 →
J F M A M J J A S

100

200

300

400 OneTrust
Quantcast
TrustArc

CCPA becomes enforcable.
CCPA goes into effect.

GDPR becomes enforcable.

Figure 3: Number of websites in the Tranco 10k toplist that have adopted popular
consent management providers. We can observe spikes in adoption around the
enforcement dates for GDPR (May 2018) and CCPA (Jan/Jul 2020). Figure adapted
from [24, Figure 6].

that would have made their data collection more difficult. The GDPR’s new
imperative to manage and document consent turned the existing heterogeneity
into a potential liability as AdTech vendors would need to rely on individ-
ual websites to properly collect consent. In reaction to the GDPR, the IAB
Europe set out to develop their own privacy preference signal, the Trust and
Consent Framework (TCF). In contrast to previous standards, membership
in the working group is being controlled by IAB Europe, and the standard is
predominantly developed by private firms from the advertising and publishing
industries [35]. The IAB fittingly describes TCF as “the only GDPR consent
solution built by the industry for the industry” [36].

The TCF defines the legal terms and data processing purposes that users
consent to and the format by which consent signals are stored and exchanged
between websites and AdTech companies. It is implemented by websites in
the form of a consent dialog that is technically part of the webpage. It does
not require browser vendors to adopt the signal, as was the case with DNT.
Instead, it creates the role of Consent Management Providers (CMPs), who
implement the framework on individual websites. CMPs are central to the
TCF in providing an interface between website, user, and ad vendors. They
provide websites with a (customizable) cookie prompt to embed, store users’
choices as browser cookies, and provide an API for advertisers to access this
information (see Figure 2).

To receive TCF consent signals from CMPs, AdTech vendors must register
with the IAB and pay a yearly maintenance fee of 1,500e to join the Global
Vendor List (GVL). As of January 2022, 784 companies are registered on this
list. Most CMPs collect consent for the entire GVL by default, which allows
them to share consent decisions across multiple websites [37].

While P3P and DNT required active adoption from a party that was
generally disincentivized to do so (AdTech), TCF could be adopted by websites
with little recourse from browsers or users. The increasing complexity of the
legal landscape and uncertainty around sanctions for non-compliance led many
websites to adopt CMPs (see Figure 3). After custom cookie banners on
websites [38] and abandoned standards like P3P and DNT, the successful rise
of TCF represents a new stage in how privacy preferences are communicated.

6



1.3 the effect of privacy preference signals

Personalized
browser
profile

visit website Accept Tracking

Reject Tracking

Found personalized ads?
yes no

� violation

ok

ok

ok

Figure 4: To measure the impact of consent dialogs on ad personalization, a series of
websites is visited with a primed browser profile. On each website, the user accepts or
rejects all tracking. If no consent was given, the presence of personalized ads is taken
as an indicator for unlawful data processing. Figure adapted from [39, Figure 1].

In the second paper of this thesis (Chapter 5), I measure the formation
of this ecosystem using longitudinal measurements. Based on 161 million
browser crawls, the paper provides evidence that CMP adoption is driven
by the enforcement of privacy laws, and that a few CMPs have set out to
dominate the market. Although the market power of CMPs and the dominance
of the IAB in the design of the privacy preference signal is worrying, the same
standardization opens up novel measurement opportunities.

1.3 the effect of privacy preference signals

A key question with privacy preference signals is whether third parties are
compliant and stop processing personal data when instructed to do so (see
soft privacy in Section 1.1). Researchers have tried to answer this question
by checking whether the user’s browser transmits the correct TCF signal
in its HTTP requests to third parties [40, 41]. While this method uncovers
obvious privacy violations where the website owner already misrepresents
the user’s decision, it does not help to understand whether the embedded
AdTech vendors are compliant when receiving a correct TCF signal. AdTech
vendors have monetary incentives to build extensive ad profiles, which is at
odds with respecting the user’s wishes. To provide some anecdotal evidence:
Pesch interviewed advertising companies and found that some only joined the
IAB’s GVL because business partners required membership; they claimed their
own data processing would not require consent [42]. Clearly, if compliance
of vendors cannot be measured, they have little incentive to actually stop
amassing the gigantic databases Westin warned about (see Section 1.1).

Measuring whether AdTech partners respect TCF signals is more tricky
as researchers cannot scrutinize AdTech’s server-side processing code. One
possible approach to solve this problem is to perform end-to-end measurements
(see Figure 4). Users first prime a browser profile with specific interests by
visiting related websites and searching for relevant terms. This places cookies
and other tracking identifiers in their browser profile which can then be picked
up by AdTech. In a second step, they visit generic websites where they either
accept or reject all tracking in the consent dialog (the treatment factor in our
study design). If no consent is given to personalize ads and all vendors behave
correctly, advertisements for the primed interests should be highly unlikely to

7



introduction

accept everything

no consent

object to legitimate int.

0% 100%% of observed websites

no ads generic ads personalized ads

Figure 5: Observed ads depending on the communicated privacy preference signal.
Manual measurements show that not providing consent in TCF dialogs removes most
ads personalization on a sample of news websites. When additionally objecting to
data processing based on legitimate interests, many publishers opt to not show any
ads at all (N = 44, Nov. 2022). Figure adapted from [39, Figure 5].

appear. Seeing a significant amount of personalized ads would be an indication
of misconduct by the embedded AdTech parties.

In the third paper of this thesis, I performed such end-to-end measurements
both manually and in an automated fashion. Using 44 manual measurements
performed by students, the paper shows that rejecting a consent dialog does
indeed stop the majority of ad personalization (see Figure 5). Curiously, when
users are instructed to also object to data processing based on legitimate
interests (an advanced — usually well-hidden — opt-out mechanism available
in TCF consent dialogs), a large fraction of websites even opt to not show any
advertisements. This behavior is difficult to explain as the same websites were
capable of showing non-personalized ads when the user simply clicked “Reject
All” without explicitly objecting to legitimate interests.

Scaling this manual study to a large sample set by automating the priming
process, the consent dialog interaction, and the personalization measurement
turned out to be more difficult than expected. Using the automated approach
it was only possible to measure comparably very small effect sizes, which can
be attributed to AdTech’s strong anti-bot measures. This leaves this part
of the paper with a meta result: Measuring the effects of privacy preference
signals at scale is a very hard problem to solve. This is bad news for privacy
advocates and data protection agencies, who need to rely on laborious manual
methods to keep tabs on AdTech. However, despite these limitations, the
manual analysis in this paper has shown that consent decisions are widely
respected by major players in the ecosystem.

8
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D
N

T
no

ne

0% 100%% of users
Dialog:
Signal:

not shown shown blocked
accept reject

Figure 6: Users that send a Do Not Track (DNT) header are more likely to block
cookie dialogs or refuse consent when presented with one. However, more than 75%
of DNT users still click “Accept”. This creates ambiguous privacy preference signals
as users technically provide consent via TCF but also indicate that they do not like
to be tracked via DNT. Figure adapted from [43, Figure 3].

1.4 conflicting signals

In theory, privacy laws like GDPR and CCPA should empower users to control
how their personal data is processed. However, the adoption of TCF and the
failure of competing signals have made it difficult and time-consuming for
users to exercise their rights. As described in the second paper of this thesis,
AdTech unsurprisingly put their own interests first in the design of the TCF
standard.

With TCF succeeding, the competing interests of privacy advocates led
to the proposal of a new standard, the Global Privacy Control (GPC) [44].
GPC, first released as an unofficial draft specification in October 2020, aims to
provide a simpler way to exercise one’s rights. Last updated in January 2022,
it follows the spirit of DNT in using a single-bit HTTP header to communicate
preferences. However, while DNT lacked means of legal enforcement, GPC
reframes “Do Not Track” as a “Do Not Sell” request under CCPA, and as a
general request not to sell or share data with other data controllers under
GDPR [45]. This means that in contrast to DNT, GPC references specific
enforceable legal rights. This, GPC proponents argue, makes it possible to
enforce that AdTech companies adopt and respect the signal.

An important difference between DNT/GPC and TCF is that they do not
operate on the same technical layer. While TCF is directly embedded into
websites, DNT and GPC are sent by the browser or by browser extensions.
This implies that users may transmit more than one signal at the same time
and thereby express conflicting or ambiguous preferences. For example, a
user may have configured their browser to always send a GPC “Do Not Sell”
signal, but at the same time they may click “Accept” on a TCF cookie dialog
embedded on a website.

The possibility of users sending multiple signals raises questions about legal
interpretation under GDPR, CCPA, or other privacy laws. For example, one

9
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could argue that TCF signals should take precedence because their consent is
given specifically for an individual website the user trusts, whereas DNT/GPC
is a global non-specific browser setting. On the other hand, existing research
has shown that TCF dialogs often employ deceptive design patterns [46], which
puts the validity of TCF “consent” into question. More concretely, the GDPR
specifically stipulates that consent must be unambiguous. It is clear that
the question of which signal takes precedence under such circumstances can
only be answered by legal analysis. However, such analysis first needs to
be supported by showing that the problem is not theoretical and users do
send conflicting privacy preference signals in the wild. In the final paper of
this thesis (Chapter 7), I show that conflicting signals do exist in the wild.
The paper finds a sizable number of users who manually enabled DNT in
their browser settings, but who nonetheless accept a TCF consent dialog (see
Figure 6). Additionally, the data also shows that TCF consent dialogs are often
blocked entirely by adblocking extensions. This phenomenon was previously
overlooked in the academic discourse and showcases another approach to how
users may indirectly express their privacy preferences in a way that is not
prescribed by AdTech.

Section 2 provides the reader with a short overview of all papers in this thesis.
In Section 3, I discuss the most important open questions with regard to
privacy preference signals and conclude the dissertation. Part ii contains the
four papers included in this thesis.

10



2
SUMMARY OF PAPERS

Over the course of my PhD, I have (co-)authored five papers, four of which are
included in this dissertation. To provide the reader with a high-level overview,
I shortly summarize each paper and my personal contribution to it in this
section. Where available, the acceptance rate and CORE rank [47] of the
conference is provided as additional context. My contribution to each paper is
evaluated in three categories: i) the conception of the research idea, ii) the
operational research work, and iii) the write-up of the paper.
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summary of papers

Maximilian Hils, Daniel W. Woods, and Rainer Böhme. Privacy Preference
Signals: Past, Present and Future. Proceedings on Privacy Enhancing Tech-
nologies, (4), 2021. https://doi.org/10.2478/popets-2021-0069

CORE Rank: A
Acceptance Rate: 19%

abstract. Privacy preference signals are digital representations
of how users want their personal data to be processed. Such signals
must be adopted by both the sender (users) and intended recipients
(data processors). Adoption represents a coordination problem that
remains unsolved despite efforts dating back to the 1990s. Browsers
implemented standards like the Platform for Privacy Preferences (P3P)
and Do Not Track (DNT), but vendors profiting from personal data
faced few incentives to receive and respect the expressed wishes of data
subjects. In the wake of recent privacy laws, a coalition of AdTech firms
published the Transparency and Consent Framework (TCF), which
defines an opt-in consent signal. This paper integrates post-GDPR
developments into the wider history of privacy preference signals. Our
main contribution is a high-frequency longitudinal study describing how
TCF signal gained dominance as of February 2021. We explore which
factors correlate with adoption at the website level. Both the number of
third parties on a website and the presence of Google Ads are associated
with higher adoption of TCF. Further, we show that vendors acted as
early adopters of TCF 2.0 and provide two case studies describing how
Consent Management Providers shifted existing customers to TCF 2.0.
We sketch ways forward for a pro-privacy signal.

contribution (40%, 70%, 20%). This paper stands out
from the rest in that its combination of qualitative aspects (describing
past signals) and quantitative aspects (longitudinal measurements of
TCF) required several rounds of revisions and additional measurements.
The feedback we received from the anonymous PETS reviewers was
exceptionally constructive and led to a paper that now comprehensively
covers the history of privacy preference signals. My main contribution
to this study is the measurement of TCF 2’s uptake using multiple
methods, which we collaboratively integrated into the wider history of
privacy preference signals.
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Maximilian Hils, Daniel W Woods, and Rainer Böhme. Measuring the Emer-
gence of Consent Management on the Web. In Proceedings of the Internet
Measurement Conference 2020, IMC ’20. ACM, 2020. https://doi.org/10.

1145/3419394.3423647

CORE Rank: A
Acceptance Rate: 24.5%

abstract. Privacy laws like the General Data Protection Regula-
tion (GDPR) and the California Consumer Privacy Act (CCPA) have
pushed internet firms processing personal data to obtain user consent.
Uncertainty around sanctions for non-compliance led many websites to
embed a Consent Management Provider (CMP), which collects users’
consent and shares it with third-party vendors and other websites. Our
paper maps the formation of this ecosystem using longitudinal mea-
surements. Primary and secondary data sources are used to measure
each actor within the ecosystem. Using 161 million browser crawls, we
estimate that CMP adoption doubled from June 2018 to June 2019
and then doubled again until June 2020. Sampling 4.2 million unique
domains, we observe that CMP adoption is most prevalent among
moderately popular websites (Tranco top 50-10k) but a long tail exists.
Using APIs from the ad-tech industry, we quantify the purposes and
lawful bases used to justify processing personal data. A controlled
experiment on a public website provides novel insights into how the
time-to-complete of two leading CMPs’ consent dialogues varies with
the preferences expressed, showing how privacy aware users incur a
significant time cost.

contribution (60%, 95%, 60%). This paper is included as
the second publication in my thesis, yet it was written before the first one.
While I laid the foundation for many of the PETS paper’s measurements
here, it only makes sense to start the narrative with the history of privacy
preference signals. After collaboratively developing the research idea, my
individual contribution in this work is the conception, implementation,
validation, and technical description of our longitudinal measurement
instrument.
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Maximilian Hils. Measuring the Impact of Privacy Preference Signals, 2022.
(work-in-progress, to be submitted)

abstract. Since the passage of the General Data Protection Reg-
ulation (GDPR) in Europe, many websites employ cookie dialogs to
obtain consent from users. Previous research has shown that AdTech
regularly uses dark patterns in these dialogs to trick users into consent-
ing. This paper goes beyond the user interface and sets out to analyze
whether clicking “Reject All” in a cookie dialog does actually stop the
data processing.

We perform manual and automated end-to-end measurements in
which we first create personalized browser profiles, and then measure
how different consent signals affect observed ad personalization. Our
user study with 2093 website observations shows that many AdTech
providers do indeed respect negative signals and stop showing personal-
ized ads. We attempt to automate our measurements and instrument
major browser engines from different vantage points using multiple
crawling strategies. However, we find that the effects of privacy pref-
erence signals are hard to measure at scale due to AdTech’s anti-bot
measures.

While our main result is a positive one (AdTech respecting privacy
preference signals), we suggest that this is simply because the risk of
non-compliance currently outweighs the profit that could be gained from
the small minority of users who do not give consent. With regulators
enforcing easier opt-out mechanisms, measuring compliance will become
increasingly necessary.

contribution (100%, 100%, 100%). Building on the expe-
rience gained from the other papers in my thesis, I have carried out all
work for this study on my own. Compared with the other papers it has
the most ambitious measurement setup, examining compliance under
the TCF from a novel perspective.
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Maximilian Hils, Daniel W. Woods, and Rainer Böhme. Conflicting Privacy
Preference Signals in the Wild. In Data Protection and Privacy, volume 15,
2022. To appear.

abstract. Privacy preference signals allow users to express prefer-
ences over how their personal data is processed. These signals become
important in determining privacy outcomes when they reference an
enforceable legal basis, as is the case with recent signals such as the
Global Privacy Control and the Transparency & Consent Framework.
However, the coexistence of multiple privacy preference signals creates
ambiguity as users may transmit more than one signal. This paper
collects evidence about ambiguity flowing from the aforementioned two
signals and the historic Do Not Track signal. We provide the first
empirical evidence that ambiguous signals are sent by web users in the
wild. We also show that preferences stored in the browser are reliable
predictors of privacy preferences expressed in web dialogs. Finally, we
provide the first evidence that popular cookie dialogs are blocked by the
majority of users who adopted the Do Not Track and Global Privacy
Control standards. These empirical results inform forthcoming legal
debates about how to interpret privacy preference signals.

contribution (80%, 100%, 50%). This paper completes my
thesis with a user study that I designed and performed to investigate the
occurrence of conflicting privacy preference signals. It builds on a body
of existing GDPR user studies, but introduces additional factors such as
the influence of adblockers (which were not considered previously) into
the academic discourse. I contributed significantly to the conception of
the research question, the write-up, and all other parts of the research
process. In particular, the writing of the paper made me pick up a
succinct style to concisely communicate method and results given a
short page limit.
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3
CONCLUS ION

This dissertation has covered privacy preference signals on the web from a
variety of perspectives. For these signals to be successful, they must be adopted
by both senders (users) and recipients (AdTech). However, as outlined in the
first paper of this thesis, these two parties tend to have very different interests.
On the one side, AdTech vendors and publishers don’t want to forego their
highly lucrative targeted advertising practices. This first led them to send
intentionally misconfigured P3P policies, and then later quit the “Do Not
Track” standardization process once it threatened to be on by default. On the
other side, users would like simple and effective privacy preference signals to
stop rampant and intransparent data collection by third parties. It’s evident
that consensus-based standardization is doomed to fail in the face of these
conflicting interests. The unfortunate conclusion for technologists is that the
success of future privacy preference signals will likely not be determined by
their technical merit.
Given the hardened fronts between privacy-aware users and AdTech, we
naturally arrive at the question of whether regulators can resolve the conflict.
One well-intentioned attempt at this was the passage of the GDPR, forcing
AdTech to either obtain consent or dial back on data collection. However,
faced with this choice, AdTech developed the TCF signal — serving their own
interests only —, and unilaterally forced it upon users in the form of consent
dialogs on websites. This widespread emergence of “cookie banner terror” [20],
tracked in the second paper of this thesis, is certainly not what regulators had
in mind. Resolving the situation will require future interventions to reduce
the number of decisions users need to make.
Putting regulation aside, a key problem with privacy preference signals remains
the lack of hard privacy. Users need to trust AdTech to honor preference
signals over its own financial interests. It is unrealistic to expect AdTech
to concede voluntarily if no one is watching, so some enforcement needs to
happen. The third paper in this thesis shows that measuring compliance — a
prerequisite for enforcement — is already difficult from a technical perspective.
Consolation may come from the idea that larger players in the ecosystem are
under closer public scrutiny, leaving fewer opportunities to disregard signals.
Nonetheless, the IAB’s vendor list has 794 entries. It is unclear how compliance
can be enforced in the dark alleys of AdTech’s tracking ecosystem.
Looking ahead, can we fix the consent dialog mess that the GDPR inadver-
tently created? The rising popularity of new privacy signals such as GPC
may be reason for cautious optimism. However, for user-friendly signals to
succeed internationally, regulators must establish strong practical precedent
on conflicting signals. AdTech will argue that their site-specific consent dialogs
should take priority over global permanent signals like GPC. Unless regulators
take a strong stance against this interpretation, consent dialogs and dark
patterns won’t go away.
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a) contemporary consent banners and cookie dialogs

Cookie dialog for thechoiceisyours.whatisthematrix.com (Sept. 2021)
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Consent banner for www.amazon.de (Feb. 2022)
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abstract

Privacy preference signals are digital representations of how users want their
personal data to be processed. Such signals must be adopted by both the
sender (users) and intended recipients (data processors). Adoption represents
a coordination problem that remains unsolved despite efforts dating back to
the 1990s. Browsers implemented standards like the Platform for Privacy
Preferences (P3P) and Do Not Track (DNT), but vendors profiting from
personal data faced few incentives to receive and respect the expressed wishes
of data subjects. In the wake of recent privacy laws, a coalition of AdTech firms
published the Transparency and Consent Framework (TCF), which defines an
opt-in consent signal. This paper integrates post-GDPR developments into the
wider history of privacy preference signals. Our main contribution is a high-
frequency longitudinal study describing how TCF signal gained dominance as
of February 2021. We explore which factors correlate with adoption at the
website level. Both the number of third parties on a website and the presence
of Google Ads are associated with higher adoption of TCF. Further, we show
that vendors acted as early adopters of TCF 2.0 and provide two case-studies
describing how Consent Management Providers shifted existing customers to
TCF 2.0. We sketch ways forward for a pro-privacy signal.
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privacy preference signals: past, present and future

4.1 introduction

Privacy preference signals are digital representations of how users want their
personal data to be processed. These vary from a binary “Do Not Track” signal
through to more complex expressions in cookie consent dialogues. Such signals
are intended to influence how entities including websites and third parties
process personal data. Web actors may collect privacy preferences in the hope
of legitimizing data processing in the eyes of customers or to satisfy legal
obligations.

Efforts to standardize privacy preferences go back to at least P3P, which
was presented as a prototype to US regulators in 1997 and recommended
as a standard by the World Wide Web Consortium (W3C) in 2002. It was
adopted by around 20k websites [1], but was criticized by privacy advocates
for not establishing consequences for false reporting of privacy practices [2].
Another W3C working group was formed in 2011 to specify the Do Not
Track HTTP extension but it was closed before completion, citing the lack
of planned support among “the ecosystem at large” [3] as exemplified by the
Interactive Advertising Bureau’s withdrawal [4]. The first wave of privacy
preference signals is completed by the opt-out cookies [5] created by the
Network Advertising Initiative (NAI) as part of a regulatory compromise with
the Federal Trade Commission [6]. The NAI never published a specification,
the opt-out only concerned a narrow definition of tracking, and very few
vendors participated [5].

A second wave of privacy preference signals was prompted by the passage of
privacy laws like the EU General Data Protection Regulation (GDPR) and the
California Consumer Privacy Act (CCPA). For example, the GDPR establishes
that an opt-in consent signal may constitute a legal basis for processing
personal data providing the consent was “freely given, specific, informed and
unambiguous”. These laws prompted research that has largely focused on
the interfaces through which opt-in [7, 8, 9, 10] and opt-out [11, 12] signals
are collected. An ecosystem of actors has emerged to manage the collection
of opt-in consent signals on behalf of websites [13]. Often these signals are
collected and shared with a pay-for-membership “Global Vendor List”, which
has been termed the “commodification of consent” [14].

At this point, skeptics will rightly state that such signals exist in the world
of soft privacy with no technical guarantees about personal data flows and
that we should instead focus on the technologies associated with hard privacy.
Such skepticism is compelling but should be qualified by the behavior of
privacy advocates and AdTech firms. Both sides invested resources in P3P and
DNT working groups. The latter posed a threat to AdTech business models
as evidenced by the Interactive Advertising Bureau withdrawing from the
working group after Microsoft announced it would be turned on by default [4].
The power of these signals can also be seen in websites’ dark patterns that
nudge users towards expressing certain preferences [9, 11, 10]. Given the stakes
have been further increased by sanctions associated with the GDPR and the
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4.1 introduction

CCPA, widespread adoption of a privacy preference signal would have privacy
implications.

In terms of technical design, there is disagreement over who controls the
interface by which users set privacy preferences. In both P3P and DNT, the
user expresses preferences to a user agent. In contrast, user preferences are
collected by embedding an interface in a web page in both of the approaches
developed by AdTech industry bodies, namely the Interactive Advertising
Bureau (IAB) [8] and the Network Advertising Initiative (NAI) [5]. This
bypasses browsers by making the signal backwards compatible with existing
technology. Turning to semantics, AdTech vendors proposed opt-in signals
that could represent compliance, whereas privacy advocates proposed (global)
opt-out signals that empower users. In summary, these signals have a long
history and also have privacy implications going forward.

This paper systematizes historical knowledge on privacy preference signals
(the past), measures which signals have been adopted as of February 2021
(the present), and reflects on adoption strategies for a pro-privacy signal (the
future). We show a grim state of affairs for user control over privacy: P3P is
obsolete, NAI’s system still has only 75 participating AdTech firms, and the
reincarnation of Do Not Track—the Global Privacy Control—has been adopted
by less than 10 websites. Meanwhile, the Interactive Advertising Bureau’s
TCF 1.x and TCF 2.0 have been adopted by thousands of websites. We then
use high-frequency web measurements to build a longitudinal case-study of
how adoption and TCF 2.0 migration varied over time, websites and AdTech
vendors. Our contributions include:

• Systematize knowledge about first wave (P3P, DNT, and NAI opt-out)
and second wave (TCF and GPC) privacy preference signals.

• Measure present day adoption and show that TCF adoption is
roughly comparable to historical P3P adoption among websites, whereas
an order of magnitude more AdTech vendors have adopted TCF than
all other signals combined.

• Test explanatory variables for TCF adoption like website popularity,
category, number of embedded third parties, and presence of Google Ads.
TCF adoption is higher among websites with closer ties to AdTech.

• Longitudinal case-study exploring TCF 2.0 migration strategies
among the two most popular Consent Management Platforms, and
how the new version changed the legal basis that individual AdTech
vendors claim for tracking.

Section 4.2 describes the five privacy preference signals and Section 4.3
identifies related work measuring their adoption. This motivates our empirical
measurements, which are described in Section 4.4. Our results describing the
present are contained in Section 4.5. Section 4.6 discusses the past, present
and future of privacy preferences. We conclude in Section 4.7.
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4.2 background

This section compares five privacy preference signals in terms of design prop-
erties and real-world adoption, which is summarized in Table 4.1. We selected
these signals because they were the most widely adopted among the key stake-
holders, namely browsers, AdTech vendors and websites. We do not provide a
background on the widespread online tracking that motivate privacy preference
signals, such as cookies [15, 16] and other tracking technologies [17, 18, 19].
Similarly, we do not consider privacy preserving technologies unless they func-
tion to express privacy preferences, such as when browsers/add-ons collect
user preferences and automate sending the signal. We now turn to the five
signals. Figure 4.1 provides and overview of the key events for each signal and
Figure 4.2 provides a visual summary of the signal’s flow.

4.2.1 Platform for PrivacyPreferences (P3P)

P3P is one of the earliest privacy preference signals proposed for the Web. A
demonstration of a P3P prototype was presented before the FTC in June 1997.
The W3C recommended the P3P 1.0 specification in 2002, which describes
an XML format to encode a human-readable privacy policy into a machine-
readable specification stating the type, recipients and purposes of data collected.
Users can define individual privacy preferences, which browsers can cross-check
against a website’s self-reported P3P policy. Each website’s implementation
could become arbitrarily complex with different policies for each web page and
third-party cookie.

P3P was adopted by, respectively, 588 (10%), 463 (8.34%), 2.3k (2.3%),
and 33.1k (60%) of the sites in samples from 2003 [20], 2007 [21], 2007 [22], and
2010 [1]. The final sample [1] is not representative of the wider web because
the majority of sites were discovered by the Privacy Finder search engine,
which specifically aimed to identify web sites that respect a user’s privacy.
However, the finding of 19 820 websites [1] implementing P3P in 2010 serves
as a reasonable lower bound in Table 4.1. The same study [1] found that 11

(15%) of a sample of AdTech vendors had a P3P privacy policy.

Microsoft was the only browser developer to fully adopt P3P and stopped
support in 2016. Mozilla supported only some P3P features, but removed
them by 2007. Other browsers shunned P3P and instead allowed users to
set defaults like blocking all third party cookies [23]. P3P-specific browser
extensions provide a more meaningful perspective on conscious user adoption
than usage statistics for each browser. For example, Privacy Bird, an add-on
for Internet Explorer 5 and 6 that displays a website’s P3P policy in an easy
to understand language, was downloaded 20k times in the first 6 months [24].
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Baseline: Personal data flow in web advertising
User Website AdTech
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select 1visit

ask for consent

accept/reject track if
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Figure 4.2: User prompt, privacy preference signals, and personal data flows when
using each approach.

4.2.2 Network Advertising Initiative (NAI) Opt-Out

AdTech vendors founded a self-regulatory body, the NAI, as a compromise
following the Federal Trade Commission’s (FTC) report on web privacy sub-
mitted to Congress in 1998 [6]. The NAI established a system of opt-out
cookies. Users can visit the NAI’s website1 and set an opt-out cookie for each
participating vendor to signal that the user does not want to be tracked by

1 https://optout.networkadvertising.org/
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that firm. Critics [5] note that the NAI’s narrow definition of tracking would
not cover many techniques observed in the wild [17, 18, 19].

The NAI provide a list of all participating vendors, which was just 4 in
2004, 75 in 2010 [1] and stands at 75 participating vendors as of January
2021. Websites and browsers do not need to adopt the NAI’s system because
it piggy-backs on existing browser cookie functionality. The NAI reported one
million visits to the the opt-out page in 2006 [5] but we cannot differentiate
unique visitors. Returning to browser extensions, there were at least 44.9k
users of the Targeted Advertising Cookie Opt-Out (TACO) add-on2, which
maintained an up to date list of opt-out cookies.

4.2.3 Do Not Track (DNT)

Acknowledging the failure of P3P, the W3C created a working group in 2011 to
standardize the Do Not Track (DNT) mechanism [25]. DNT was less expressive
than P3P. Implementation involved browsers sending a DNT: 1 header with
each HTTP request to signal that their user did not wish to be tracked.
Stakeholders disagreed on whether DNT should default to on or off [4, 26].
This opposition was part of the reason why the W3C working group was closed
without success in 2019 [3].

DNT was implemented in browsers by Microsoft, Apple, Mozilla and
eventually Google [27]. Websites and third-party vendors could signal in an
HTTP response header if they respected the user’s DNT signal. This signal
was not exposed in any browser’s user interface3 (outside of add-ons), which
meant users were largely unaware of website adoption. Only 9 companies
issued public statements regarding support of DNT [28]. In 2011, Mozilla
reported DNT adoption by Firefox users to be at 17% in the US and 11%

outside [29], although this oversamples privacy aware users.

4.2.4 Global Privacy Control (GPC)

The unofficial GPC draft specification [30], which was released in October
2020, continues the work of DNT in extending HTTP requests with a single
bit value. Perhaps the most important change is re-framing Do Not Track
as a “Do Not Sell” and “Object To Processing” signal, which is closer to the
language of the GDPR and the CCPA, which became effective in May 2018

and January 2020. This means GPC references (enforceable) laws, which DNT
lacked.

As of February 2021, Mozilla and the Brave browser are listed as publicly
supporting GPC, but only Brave have implemented it. We do not provide any
estimates for user size given it was released so recently.

2 https://web.archive.org/web/20110920055245/https://addons.mozilla.org/en-
us/firefox/addon/targeted-advertising-cookie-op/

3 https://www.w3.org/TR/tracking-dnt/#responding
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4.2.5 Transparency and Consent Framework (TCF)

After the enactment of the GDPR, an advertising industry body (IAB Europe)
formed a working group to develop the Transparency and Consent Frame-
work (TCF), “the only GDPR consent solution built by the industry for the
industry” [31]. Participants predominantly representing private firms from the
advertising and publishing industries co-developed the TCF, which defines the
legal terms and data processing purposes that users consent to and the format
by which consent signals are stored and exchanged between third parties. A
new version (TCF 2.0) was introduced in 2020.

TCF is implemented by websites in the form of a consent dialog that does
not require browser buy-in, much like NAI. It creates the role of Consent
Management Providers (CMPs), who implement the framework on individual
websites. CMPs are central to the TCF in providing an interface between
website, user, and ad vendors. They provide websites with a (customizable)
cookie prompt to embed, store users’ choices as browser cookies, and provide
an API for advertisers to access this information. We refer to Hils et al. [13,
Fig. 2] for a visual depiction of the ecosystem.

The IAB maintains a public list of CMPs, which lists 119 participating
providers as of February 2021.4 A website wishing to implement the TCF
independently must become a CMP, otherwise they can out-source this to an
existing CMP. In reality, a handful of CMPs dominate the market [8]. The
largest CMPs are OneTrust and Quantcast, which account for 37.4% of all
CMP implementations in the Tranco 100k (see Section 4.5).

To receive TCF consent signals from CMPs, AdTech vendors must register
with the IAB and pay a yearly maintenance fee to join the Global Vendor
List (GVL)5. As of Feb. 2021, 684 companies are registered on this list. Most
CMPs collect consent for the entire GVL by default, which means privacy
preferences apply to the whole list [14].

The specifications of TCF 1.x and TCF 2.0 both define a more complex
signal than DNT/GPC. Under TCF 1.x, users may affirmatively consent to any
combination of five data processing purposes. They may also state individual
preferences for each vendor on the GVL. TCF 2.0 expands this model to ten
purposes and two special features, increasing complexity even further.

In both TCF versions, users are prevented from expressing certain pref-
erences. Vendors can claim that they have a legitimate interest in a specific
purpose, which serves as their legal basis to process data even if the user clicks
“Reject all”. Starting with TCF 2.0, some CMPs provide users with the addi-
tional option to object to this processing (GDPR asks for such functionality),
but this needs to be done separately in a subdialog. As such, the “Reject all”
button commonly does not actually express all possible preferences. With
TCF 2.x, vendors can declare that their legal basis is flexible. This means they
would like to process data with the user’s consent, but they can also perform

4 https://iabeurope.eu/cmp-list/
5 https://iabeurope.eu/vendor-list/
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(limited) processing based on a legitimate interest. As the only exception,
TCF 2.x removes the option for vendors to claim a legitimate interest in
Purpose 1—“Store and/or access information on a device”—, possibly preempt-
ing an intervention by regulators. The policy changes between TCF 1.x and
TCF 2.0 motivate measuring the transition.

4.3 related work

Section 4.3.1 briefly describes the privacy practices employed by websites in or-
der to motivate why privacy preferences matter. Section 4.3.2 surveys research
into privacy preferences including the previous five signals. Section 4.3.3 links
the paper to the general question of why are technical standards adopted?

4.3.1 Privacy Practices

Researchers consistently demonstrate privacy eroding techniques deployed in
the wild [15, 16, 17, 18, 19] motivated by online advertising business models [32].
Personal data is leaked via social networks [33], third-party web scripts [34],
apps [35], software development kits [36], and organizational breaches [37]. The
scale of tracking motivate re-designing systems to provide privacy guarantees.
For example, multihoming can be used to defend against fingerprinting [38]
and trusted hardware can ensure compliance to stated privacy policies [39].

Turning to so-called soft privacy, data processors are constrained by law
and social norms. These constraints are far from absolute. For example,
half of websites in a 2017 sample violated laws implementing the EU Privacy
Directive by installing cookies before collecting user consent [40]. This is likely
because organizations do not incur significant costs following data breaches
and privacy violations in terms of either regulatory fines or lost shareholder
value [41]. Nevertheless, firms’ privacy practices are somewhat impacted by
data processors’ self-declared privacy policies [42, 43, 44, 45] and even the
privacy preferences expressed by users, to which we now turn.

4.3.2 Privacy Preferences

Interviews [46] and surveys [47, 48] can use natural language to understand
users’ actual privacy preferences, which tend to contradict observed behav-
ior [49, 50, 51]. Privacy languages aim to express preferences more precisely
than natural language. For example, APPEL encodes user preferences to be
compared against P3P policies [52]. It could not express acceptable practices
nor capture the realities of secondary sharing, which motivated XPref [53]
and P2U [54], respectively. Alternative languages focus on the usability for
developers [55], enabling audits [56], and providing explanations [57]. Privacy
languages have been regularly surveyed by academics [58, 59, 60, 61] but
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unfortunately there has been little adoption in practice [59]. This motivates
our focus on signals deployed in the Web ecosystem.

In terms of the first wave of signals, measurements of DNT and NAI opt-out
adoption relied on organizations disclosing private data sources like Firefox
configurations [29], opt-out web page visits [5], or the NAI’s membership [5].
P3P differed in that website adoption could be quantified via web scraping [20,
21, 62, 1, 22, 63] often sampling via commercial website rankings.

Turning to the second wave, there are no GPC adoption studies because
only a draft specification has been released so far. The TCF ecosystem has
been probed from a range of academic disciplines. Legal methods are relevant
to the semantic content of the signal. For example, the purposes for collecting
personal data standardized in the TCF may not be specific enough [64].

User interface research is important because the TCF does not standardize
how the consent decision is presented to users, which is known to be influen-
tial [65, 66, 67, 10]. At least two studies have found that consent dialogues
used to collect consent under the TCF contain design choices that nudge users
towards providing consent [7, 9].

Web scraping studies have focused on implementation problems with
TCF [64] or the ecosystem of consent management providers (CMP) [13].
These studies provide measurements of TCF in passing. For example, both
studies measure TCF vendor registrations and their claimed purposes for
processing data for TCF 1.x [13, p. 9] and both TCF 1.x and TCF 2.0 [64].
The latter study measures aggregate TCF 2.0 adoption, whereas we measure
and visualise at the vendor level. Matte et al. [8] show how TCF 1.x adoption
varies by top-level domain (TLD) and identify the most popular CMPs across
the top 1k sites in five EU country code TLDs. Hils et al. [13] use longitudinal
measurements to show the market growth of six CMPs, highlighting how fast
the ecosystem changes.

4.3.3 Standards Adoption

We build on a body of work emphasizing the role of institutions in technical
standards adoption. For example, many vendors initially saw the TCP/IP
protocols as a nuisance [68]. Leiner et al. [68] describe how a series of “confer-
ences, tutorials, design meetings and workshops” were organized to educate a
generation of vendors and engineers. The rest is history.

The community was slow to turn to adoption questions like “What Makes
for a Successful Protocol?”, which was posed by RFC 5218 in 2008. Noting
the qualitative nature of the resulting research, Nikkah et al. [69] provide an
illuminating statistical analysis of the association between technical features
of 250 RFCs and adoption success. Analysing unchanging technical features
cannot explain why it took two decades before IPv6 was widely adopted [70, 71].
Economic considerations like the scarcity of IPv4 addresses and the supply of
compatible hardware can help explain when standards are adopted [72].
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Thus, standards should be considered in the context of wider ecosystems
governed by economic incentives. For example, HTTPS adoption relies on
X.509 certificate infrastructure that was “in a sorry state” in 2011 with many
websites relying on shared or invalid certificates [73]. The situation was worse
in the long tail likely because certificates are costly [74]. Felt et al. [75] report
on significant improvements in 2017 and attribute improvements in the long
tail to institutions like Let’s Encrypt and publishing platforms—we show how
similar economic considerations explain why TCF was adopted.

4.3.4 Contribution

Our main empirical contribution involves measuring the adoption of privacy
preference signals among websites as of February 2021. Following the demise of
P3P and DNT, the TCF has become dominant and the Global Privacy Control
is still in its infancy. We explore variables explaining which websites adopt
TCF, and also longitudinally measure migration to a new version (TCF 2.0).

This work differs from existing work by focusing exclusively on the adop-
tion of privacy preference signals. We largely ignore the actors [13, 64] and
interfaces [7, 9, 10] harvesting such signals and instead focus on which factors
(e.g. website type, popularity, and partners) are associated with TCF adoption.
Further, we are the first to systematize strands of research ranging from works
in the late 1990s to post-GDPR studies. Finally, we provide the first results
about migrating between versions of such signals using our the longitudinal
methodology introduced in [13]. Our previous work focuses on detecting spe-
cific CMPs, some of whom collect non-TCF signals exclusively or only collect
TCF signals for a subset of customers.

4.4 methods

We adopt a mixed approach6 conducting both longitudinal high-frequency
measurements to determine historic adoption of TCF and migration between
versions, as well as a large-scale snapshot measurement to examine site-specific
factors that may influence adoption. Section 4.4.1 describes our snapshot
measurement of the Tranco 100k toplist. Section 4.4.2 explains how we use
the Netograph platform to conduct longitudinal high-frequency measurements.

4.4.1 Snapshot Measurements

To measure the prevalence of TCF and its different versions on the web,
we crawled the top 100k entries from the Tranco toplist, which aggregates
the ranks from the lists provided by Alexa, Cisco Umbrella, Majestic, and
Quantcast [76]. Our automated browser crawls were performed in February

6 Supplementary Material:
https://github.com/mhils/pets2021-privacy-preference-signals
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Table 4.2: Data sources for figures.

Figure Approach Data Source N CMP

4.3, 4.5 Snapshot (Feb. ’21) TrancoToplist 100k all
4.4 Snapshot (Feb. ’21) Tranco Toplist 10k all

4.6, 4.9 Longitudinal Netograph 7.2M QC/OT
4.7 Longitudinal Netograph 5.7M QC
4.8 Longitudinal Netograph 1.4M OT

4.10–4.11 Diff. of vendor list IAB 293 –

2021 using a Tranco toplist from January 20207. We used this older toplist
dated shortly before publishers transitioned to TCF 2.x in order to avoid
survivorship bias in our observations. Picking a later toplist would over-sample
websites created post-2020 who are certain to adopt TCF 2.0 and de facto
avoid a migration decision. Our toplist and a current Tranco toplist (Tranco
id KGNW from Feb. 19th 2021) overlap by 76.5%.

We first converted the Tranco list of domains to a list of URLs that can be
crawled. For each domain, we attempted to establish a TLS and a TCP con-
nection with www.domain and domain on port 443 and 80, respectively. This
was repeated three times over a week to catch temporary service disruptions.
We then picked a configuration that was reachable at least once, preferring
TLS over TCP and secondly www.domain over domain to construct our crawl
URL. An error in the TLS certificate verification was treated as unreachable.
We used http://domain as a fallback if no connections were successful.

Our crawling infrastructure was set up in a European university network.
Websites were opened using Google Chrome on Linux with its current default
user agent,6 a desktop resolution of 1024×800, and en-US as the preferred
browser language. All other settings were set to their defaults: third party
cookies are allowed, the DNT and GPC HTTP headers are not set. The
low desktop resolution and all other settings were chosen to match that of
our longitudinal measurements described below. Crawls are automated using
custom browser instrumentation based on the Chrome DevTools Protocol.
Unsuccessful crawls were retried twice within a week.

For every capture, we collected the following data points using custom
browser instrumentation. First, HTTP headers are stored for all requests and
responses. Second, connection-related metadata such as IP addresses and TLS
certificate chains are logged. Third, for every domain in a capture, its relation
to the main page, all cookies, IndexedDB, LocalStorage, SessionStorage and
WebSQL records are saved. Fourth, we store the browser’s DOM tree and
record a full-page screenshot (including scrolling).

TCF Adoption

We automatically detect whether crawled websites implement the TCF. To
do this, we wait for the website’s DOMContentLoaded event to fire, then
wait another ten seconds, and then inject JavaScript code into the execution

7 Available at https://tranco-list.eu/list/K8JW
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context of the root document. This approach for CMP detection was already
validated by Matte et al. [8] with more aggressive timeouts. As each CMP
must implement a __cmp() function for TCF 1.x and __tcfapi() function for
TCF 2.x, we check for the presence of these functions to determine if TCF
is being used. We additionally checked for other signs of TCF (such as the
presence of __tcfapiLocator or __cmpLocator), but this search did not turn
up any new results. For every TCF API we find, we issue a ping command to
learn more about the implementation. In the case of TCF 2.x, the PingReturn

object (as specified by the TCF) is expected to contain the CMP’s identifier
(as assigned by the IAB) as well as the CMP/GVL/TCF versions in use. We
also considered that a CMP may masquerade as a different CMP here. We
correlated the reported CMP ids with contacted domains and did not find any
evidence of misrepresentation.

The adoption of TCF is naturally higher on some types of websites, such as
those who typically display paid advertisements. To quantify this, we divided
the Tranco 10k toplist into categories with the help of Symantec Rulespace [77],
a categorization database already used in related work by Sanchez-Rola et
al. [78]. We limit our analysis to the Tranco 10k as a non-negligible share of
websites (11.7%) in the top 100k is not categorized, compared to only 2.4%

for the top 10k websites. We note that recent work has shown that most
categorization services are not fit for detecting specialized content or content-
blocking [79], but this does not significantly affect our coarse classification of
popular domains.

To determine the number of third parties present on each website, we
normalized all requested URLs to their effective second-level domain using
Mozilla’s Public Suffix List [80]. This list contains all suffixes under which
internet users can directly register names, including non-standard “TLDs” such
as blogspot.com. We note that this approach does not account for recent
obfuscation techniques such as CNAME cloaking [81].

We also examined the fraction of websites that appear to be collecting data
versus those showing a cookie prompt. To determine a lower bound, we took
all third-party domains that were included on at least 1.000 websites in the
Tranco 100k (158 domains) and manually removed shared resources such as
content delivery networks which may not constitute tracking (12 domains).
We then determined for each website if any of the remaining 146 third parties
were embedded. For example, we exclude s3.amazonaws.com as this domain is
commonly used to serve static assets and not for tracking. In contrast, almost
all remaining domains clearly belong to ad companies. We include both lists
in the supplementary material.6

Finally, we estimated the prevalence of non-TCF cookie notices or consent
prompts in our snapshot measurements using a simple back-of-the-envelope
heuristic. For every capture, we scan the stored copy of the browser’s final
DOM tree for the occurrence of the phrase “cookie”. The resulting estimates
only indicate orders of magnitude, which is acceptable given they are not core
to any of our results. Rather they are intended to provide context, such as
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showing government websites are significantly less likely to present a cookie
notice than our other categorizations (see Figure 4.4). In a manual inspection
of 50 randomly picked domains with and 50 domains without “cookie” in
their DOM tree, we found five domains that had a “Cookie Notice” link in
their footer (but no dialog) and no false negatives (which yields a 5% error
rate overall). Again, this part of our analysis is not as rigorous as our other
measurements and is only intended to provide context in Figure 4.4.

4.4.2 Longitudinal Measurements

To measure the adoption and transition between TCF versions longitudinally,
we analyze automated browser crawls recorded by the Netograph web mea-
surement platform.8 Netograph continuously ingests a live feed of social media
posts, extracts all URLs, and visits them from crawlers located in EU and US
data centers. For brevity, we refer to [13] for a discussion of the validity and
reliability of this measurement method. Most importantly, HTTP message
contents are not retained due to storage constraints, but a large amount of
metadata is stored, such as the HTTP headers of every request.

Relying on metadata in our longitudinal data means we have to measure
TCF adoption using CMP-specific indicators. Instead of building quick and
dirty heuristics for over 90 CMPs, we focus our efforts on creating a set of
reliable indicators for two of the leading providers in the consent management
market, Quantcast and OneTrust, which are embedded on 9.7% of websites
in the Tranco 10k (Feb. 2021). We manually analyzed their respective dialog
implementations and identified distinct HTTP requests that indicate the use
of specific TCF versions6. For Quantcast, we detected the use of TCF for all
implementations dating back to May 2018. For OneTrust, we identified the
use of TCF 1.x or TCF 2.0 in their Cookie Consent SDK launched at the end
of 2019 (otSDKStub.js).

From Netograph’s 177 million captures in the social media dataset, we
obtained all 5.7 million captures that include a Quantcast consent dialog and
all 1.4 million captures that include a OneTrust consent dialog. We grouped
captures by their effective second-level domain to not overcount repeated
measurements with varying subdomains. Due to Netograph’s sampling strategy,
less popular domains may not be observed for a several days. We account for
this by explicitly marking the period between the last TCF 1.x and the first
TCF 2.0 measurement as an (unobserved) transition phase.

Measuring Vendor Adoption

To track the adoption of TCF 2.0 by AdTech vendors, we downloaded all
previously published lists of vendors registered as participating in the TCF
from the IAB and verified their accuracy using the Internet Wayback Machine.
These lists include each vendor’s declared purposes for processing personal data.

8 https://netograph.io/
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Figure 4.3: Share of websites in the Tranco 100k that use a CMP. OneTrust and
Quantcast are the most popular providers, followed by Sourcepoint, Google, and
Liveramp.
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Figure 4.4: Share of websites in the Tranco 10k with a (TCF) cookie prompt. For
reference, marks the share of websites which do not embed popular third parties.

As of Feb. 2021, there are 215 revisions of this list for TCF 1.x and 78 revisions
for TCF 2.0. We then inspected these previous versions for longitudinal
changes and measured every instance when an AdTech vendor joins, leaves,
or switches to TCF 2.0. While TCF 2.0 is not backwards compatible from a
publisher’s point of view, a vendor that has declared support for TCF 2.0 may
still accept TCF 1.x consent strings from publishers.

4.5 results

Section 4.5.1 focuses on the relationship between website characteristics and
TCF adoption mainly using snapshot measurements. Section 4.5.2 explores
how vendors and websites migrated to TCF 2.0 using our longitudinal approach.
Table 4.2 maps each figure to the approach, data source, and covered CMPs.
We provide the underlying data in the supplementary material.6

4.5.1 TCF Adoption

We first explore how TCF adoption varies by the popularity and category
of website. Figure 4.3 shows that TCF is more prevalent among popular
websites (e.g the Tranco 5k) and that adoption is relatively consistent through
the Tranco 100k. Websites embedding OneTrust comprise a greater fraction of
TCF implementations for more popular sites (Tranco 20k), whereas Quantcast
embeds are more evenly distributed. Quantcast’s free self-service solution
may be better suited to less popular sites than OneTrust’s, which requires
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Figure 4.5: Adoption of the TCF increases significantly for websites that embed a
large number of third parties.
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Figure 4.6: Google did not participate in TCF 1.x and only joined TCF 2.0. Their
partners’ websites were far more likely to adopt TCF 2.x but not TCF 1.x.

an interaction with a sales associate. By offering a free and usable solution,
Quantcast is playing a similar role to Let’s Encrypt with HTTPS adoption [75].

Figure 4.4 shows that TCF adoption in the Tranco top 10k is highest among
websites classified as News & Entertainment and is lowest among Government
websites. The grey bars provide a relatively coarse indication (see the previous
section) of what percentage of each category displays a cookie prompts. Few
Government websites display prompts, which helps to explain the low TCF
adoption. Almost half of all cookie prompts on News & Entertainment sites
implement TCF, whereas this fraction is less than 15% for each of the other
five even though the first five categories have a similar fraction of websites
showing cookie prompts. This motivates exploring alternative explanations.

We explored whether web relationships can help explain varying adoption
rates. Figure 4.5 shows that TCF adoption increases with the number of
embedded third parties. This result could be caused by third parties influencing
partner websites to adopt TCF, but it could also be mere correlation. Websites
with business models based on personal data may be both more likely to embed
many third parties and also more likely to adopt the TCF.

Causality could be probed via a natural experiment in which websites
were randomly assigned a partner that exerts influence. It can be argued
the decision of Google to join TCF 2.0 but not TCF 1.x provides such an
opportunity. By comparing the relative adoption of TCF 1.x and TCF 2.0
among websites which embed Google with those who do not, we can isolate
the effect on TCF adoption of partnering with Google. If partnering with
Google influences websites’ decisions, we would expect a higher fraction of such
websites to adopt TCF 2.0 but not TCF 1.x as compared to the same fraction
among non-partners. Indeed, Figure 4.6 shows that for websites supporting
TCF 2.x and not using Google Ads, 60% had already joined TCF 1.x, whereas
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Figure 4.7: TCF Adoption by Quantcast customers. Note that the y-axis differs
from OneTrust; Quantcast started with a significantly larger number of TCF 1.x
customers.

this applies to only 45% of the websites using Google Ads. We cannot tell
whether the influence is active (e.g. vendor X only contracts with TCF websites)
or passive (e.g. website Y finds it easier to adopt the same standard as their
partners).

To shed more light on these relationships, we run logistic regressions with
TCF 2.0 adoption as the dependent variable. For each website, we have the
following explanatory variables: a binary dummy for the presence of Google
ads β1 (from Figure 4.6), log of the number of embedded third parties β2

9

(from Figure 4.5), and the website category (from Figure 4.4). We include a
full regression table in the Appendix (Table 4.3).

As we would expect from the figures, the first regression shows β1 and β2

have a positive relationship with adoption:

y ≈ −4.6∗∗∗ + 0.15∗∗∗β1 + 0.77∗∗∗β2 (1)

and both effects are statistically significant at the p = 0.01 level. This means
each variable adds additional explanatory power.

Model 2 adds a fixed effect for each website category and this boosts the
Pseduo-R2 from 0.08 to 0.13 relative to Model 1. The coefficient for News
& Entertainment is positive and highly significant. The high adoption rate
among such websites exceeds what could be explained by β1 and β2 alone.

Finally, Model 3 explores the interaction effect between β1 and β2. The sign
of β1∗β2 means that the relationships are sub-additive—the increased likelihood
of adoption from increasing both variables is less than the sum of increasing
each variable independently. Although these regressions have shown that
website category and web relationships help explain TCF 2.0 adoption rates,
the Pseduo-R2 shows a lot of the variance remains unexplained. This could be
down to our relatively crude statistical design aiming to directly link variables
to organisation-level outcomes. A recent systematization of knowledge [41]
highlights similar difficulties explaining cybersecurity outcomes via manifest
variables and suggests latent variables inferred via reflexive indicators represent
a better way forward.

9 We count the first party domain so that β2 ≥ 0.
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Figure 4.8: TCF Adoption by OneTrust customers. Most TCF 1.x customers
switched to TCF 2.x around August 2020. Since July 2020, OneTrust gained a large
number of new customers which directly started using TCF 2.x. Transition marks
the unobserved interval during which a switch from TCF 1.x to 2.x occurred.
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Figure 4.9: Share of websites in each segment of the Tranco toplist that use the TCF
and have upgraded to version 2.x.

4.5.2 TCF 2.0 Migration

The release of TCF 2.0 provides an opportunity to observe how actively both
vendors and websites adopt these signals.

Websites

Quantcast have the most customers embedding TCF, claim to be a driving
force behind its development, and launched a new free TCF 2.0 product in
May 2020. Yet Figure 4.7 shows how a large share of their customers had not
adopted the new version when TCF 1.x support by the IAB ended on August
15th. Approaching the IAB’s deadline, Quantcast went as far as embedding a
prominent deprecation notice visible to all website visitors into its TCF 1.x
consent dialogs (see Figure 4.13). Quantcast lost customers while enforcing
the switch over, which can be seen in the fall (6%) in old customers who
had implemented TCF 1.x from the start of August to end of September.
Quantcast’s total customers continue to grow due to new customers who
directly adopt TCF 2.0 (the yellow fraction), but the fall in old customers can
be seen in the decreasing total of the green and blue lines in Figure 4.7.

In contrast, OneTrust lost very few customers in transition, which can be
seen in the bright green area in Figure 4.8. OneTrust acquired many new
customers from June 2020 and the majority of these immediately adopted
TCF 2.0. As a result, OneTrust had a higher fraction of customer implementing
TCF 2.0 than Quantcast by the end of September 2020 even though Quantcast
pursued a more assertive transition strategy. However, Quantcast remain
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Figure 4.10: TCF Adoption by ad-tech vendors.

comfortably ahead of OneTrust in terms of number of websites embedding
TCF (although OneTrust also implements a significant number of non-TCF
dialogs [13]).

Returning to the role of top list position, Figure 4.9 shows that websites in
the Tranco top 100 began experimenting with TCF 2.0 migration in the first
half of 2020. The experimentation can be seen in how migration went down
at various points. The majority had permanently transitioned by July 2020.
This suggests the CMP’s announcement about ending support for TCF 1.x
were sufficient to lead to migration for popular websites. However, the less
popular websites were far less responsive.

Vendors

The majority of early adopters were vendors rather than websites. By the
start of 2020, more vendors (84) had switched to TCF 2.0 than there were
websites (48) embedding either version of TCF using OneTrust’s Consent SDK.
Figure 4.10 shows vendors appear to follow an S-growth pattern with slow
uptake, a relatively small window in which the majority adopt, and a stubborn
tail. The number of vendors implementing each version of TCF was relatively
consistent through to September 2020, which suggests the upgraded TCF was
not a major draw for vendors unlike for websites embedding Google Ads (see
Figure 4.6). The growth rate increased from September 2020 for reasons we
do not know, but this is much smaller than the post-GDPR growth.

Comparing time to adoption and migration between vendors and web-
sites speaks to the question of which constituency is driving TCF adoption.
Figure 4.10 shows most vendors had already adopted TCF 1.x by the time
GDPR came into effect, whereas OneTrust had no TCF product and only a
fraction of Quantcast’s 2020 customers were implementing TCF. The same
pattern holds for TCF 2.0 migration. This is consistent with vendors providing
an incentive for partner websites towards adoption. While we cannot claim
causality, this evidence at least makes it unlikely that websites pushed vendors
towards adoption.

Implications

Thus far we have focused on adoption and migration without considering the
details or privacy implications of the switch. We illustrate the need for future
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Figure 4.11: Removing the option to claim legitimate interest for purpose 1 of the
TCF (see Section 4.2) led more vendors to collect consent for accessing information
such as advertising identifiers under TCF 2.x. New vendors that did not adopt
TCF 1.x (not in vendor list) mostly seek consent as well.
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Figure 4.12: In migrating from TCF 1.x to TCF 2.x, a large portion of vendors now
can claim to be flexible regarding the legal basis; i.e. they will perform the processing
based on consent or a legitimate interest.

work by measuring the effect of migrating to TCF 2.0 on the legal basis by
which vendors claimed the right to process personal data. We recount some of
the background from Section 4.2. Both versions of TCF define purposes for
processing personal data. For each purpose, vendors implementing TCF 1.x
can declare either; they do not use personal data for that purpose, need to
first obtain consent before doing so, or claim they have a legitimate interest in
doing so (which users cannot dispute).

The IAB removed the option to claim a legitimate interest in storing and/or
accessing information on a device under TCF 2.x. Figure 4.11 shows how
this shifted the majority of vendors who were previously claiming legitimate
interest towards asking for consent. This highlights how standards setters can
influence how privacy preferences are communicated at scale by removing the
legally questionable options.
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Updated standards can also add complexity that makes analyzing impacts
difficult to evaluate. For example, the purpose “ad selection, delivery and
reporting” was renamed and split into multiple purposes in TCF 2.x. Addi-
tionally, vendors had the additional option to declare that they are flexible
regarding the legal basis; they can perform the processing based on consent or
a legitimate interest. Figure 4.12 shows how this led to a decrease in both the
number claiming legitimate interest and also the number collecting consent,
which means its unclear whether users lost or gained control under the new
standard. These results show just one way in which the design of standards
impacts user privacy.

4.6 discussion

This section discusses the past, present (as established in the previous section)
and future of privacy preference signals.

4.6.1 Past

Mark Twain’s quip that “history doesn’t repeat itself, but it often rhymes”
is also true of privacy preference signals, and identifying these rhymes helps
to reason about the present and future. For example, Table 4.1 shows that
signals proposed by AdTech (NAI and TCF) collect user preferences via a
web page, whereas the signals proposed by privacy advocates are collected
by a browser. As a result, browsers immediately support AdTech signals and
could only stop them by actively preventing web content rendering, meanwhile
AdTech vendors must actively make the decision to support P3P, DNT and
GPC. Consequently, standards developed by AdTech industry bodies have been
adopted by browsers by default, whereas AdTech vendors can delay adoption
and thus undermine the standard.

Privacy preference signals also vary in terms of the signal’s scope, perma-
nence, and how decision volume scales with web usage. Table 4.1 highlights
how privacy preferences are collected in a single interaction under P3P and
DNT/GPC and the browser assumes that this decision applies to the entire
Web. Consequently, the user makes a single decision that has long-term signal-
ing implications. In contrast, the NAI’s opt-out cookies only apply to specific
forms of tracking [5] and only last until the user loses the cookie or the vendor
sets a new one.

Scope and permanence are even narrower under the TCF, which contains
asymmetries based on the preferences expressed. The decision not to provide
consent10 only applies to a specific website and only last until the website
re-requests consent, whereas positive consent signals may apply to multiple
websites [14, 8] and re-requests are less frequent. Table 4.1 shows history
repeating itself in that privacy advocates support a signal that imposes a low

10Notably, the TCF framework does not even mention the possibility a user can “revoke” a
decision [31].
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decision load on users (P3P, DNT and GPC), whereas AdTech vendors support
impermanent signals with a narrow application that force a decision burden
on users (NAI and TCF).

Turning to the forum in which signals were designed, we have seen a move-
ment away from development via consensus-based working groups committed
to open standards. Initially all parties met in working groups coordinated by
the W3C but the clashing political objectives led to splintering. For example,
the Digital Advertising Alliance withdrew from the DNT working group in
2012 citing the lack of progress [82].

The second wave of privacy preference signals were developed outside
of open, consensus-based groups. TCF was developed via a working group
listing 139 participating organizations [83] for which the Interactive Advertising
Bureau controlled membership. The resulting TCF signal is closed in that both
websites and vendors need the IAB’s permission to implement it, although this
authority is delegated to consent management providers. GPC is developed
more openly, but lists only 17 supporting organizations with no formal forum
to coordinate development. For comparison, the P3P 1.0 specification lists
participants from 56 organizations, the DNT working group contained 110

members [82], and the NAI for a long time only included “a fraction of the
industry” [5] and now counts 91 members.

In retreating to less consensus-based processes, the Global Privacy Control
and the Interactive Advertising Bureau follow (in more than just initials) the
governance model of the Internet Advisory Board, which was created in 1984

to incorporate stakeholders beyond Vint Cerf’s “kitchen cabinet” [84, p. 51]:

“The IAB cannot be characterized as a democracy, since nobody
voted and the Board only let in the people they wanted . . . Democ-
racy, with its competing factions and its political compromises, was
not an appropriate political model for the IAB or the Internet.”

The same could be true of privacy standards given over 10 years was spent
drafting P3P and DNT at the W3C. It should be noted that the Internet’s
IAB later moved towards more open governance by creating and transferring
power to the IETF [84]. It seems unlikely AdTech’s IAB will voluntarily follow
suit, which raises the question of regulatory involvement.

The history of privacy preference signals is intertwined with regulation. Do
Not Track began as a letter to congress and was re-invigorated by the FTC
chairman going off script to mention it years later [85]. The NAI’s opt-out
cookies resulted from an agreement with the FTC to self-regulate [5]. The
IAB created the TCF in response to the GDPR, and GPC quotes “Do Not Sell”
directly from the CCPA. However, none of these signals are mandated by law,
which means they could become de-facto standards by achieving widespread
adoption.

A final lesson from history is that for all the willingness of browser developers
to attend working groups, they are reluctant to support privacy preference
signals if doing so risks impacting user experience. For example, Microsoft
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set allow-all cookies as the default for sites who misconfigure P3P presumably
because blocking cookies may have affected those websites. This decision on
defaults was widely exploited; a misconfiguration described on a Microsoft
support page was detected down to the exact typo in 2 756 sites [1]. Similarly,
DNT was adopted without sufficient enforcement from browsers, which does
little to improve user privacy beyond shifting the blame to AdTech vendors
for not respecting the signal.

More encouragingly, history also shows privacy advocates can subvert
systems with relatively low-effort browser add-ons. For example, advertising
networks expected every user to visit their individual websites to set opt-out
cookies [5]. In reality, the TACO browser extension allowed one individual to
maintain and share an updated list of cookies with thousands of users [85].
Similarly, the Privacy Bird allegedly helped boost P3P adoption by directly
making the user aware of websites’ adoption decisions. These two examples
point to the importance of designing privacy enhancing technologies that allow
users to send low-effort privacy preference signals. This becomes especially
urgent given the state of the present, to which we now turn.

4.6.2 Present

Having surveyed a history in which P3P and DNT were eventually deprecated
and NAI membership remains at less than one hundred vendors, our measure-
ments provide an updated picture as of February 2021. TCF is the dominant
signal as the GPC was released as an unofficial draft in October 2020 and only
six websites in the Tranco top 100k now implement it. Given signals must be
adopted by both sender and recipient, we now discuss adoption among each
stakeholder.

Websites are arguably the most important stakeholder for the success of
TCF since only websites can collect consent signals [14]. We discovered 7,582

TCF implementations in the top 100k. A crude comparison can be drawn
with a 2010 sample detecting 19.8k P3P implementations [1]. Turning to
estimates that reference a toplist, TCF is more prevalent among both the top
5k (13%) and top 100k (7%) than historic P3P measurements (8% [21] and
2% [22] respectively). Such comparisons are limited by changes in the Web and
also research methods; P3P adoption studies relied on commercial rankings,
whereas we used a top list designed to be stable over time for research purposes.
This should make our measurement more comparable to future work.

Turning to adoption among AdTech vendors, vendors were early adopters of
TCF and also the first to migrate to TCF 2.0 (see Figure 4.9). By October 2020,
more than 600 vendors had adopted TCF. For comparison, just 75 vendors were
offering opt-out cookies in June 2010 of which only 11 were also implementing
P3P [1]. Although AdTech vendors drafted the TCF specification, adoption
was not inevitable given the NAI had no more than 6 full members from
2001–2007 [5]. Thus, TCF is the first privacy preference signal to achieve
widespread adoption among AdTech vendors.
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Our results also speak to why websites are adopting TCF. Numerous pieces
of evidence suggest vendors incentivize partner websites to adopt TCF (see
Figure 4.3, Figure 4.5 and especially Figure 4.6). An interesting comparision
can be made with P3P. Websites embedding more third-party domains are
more likely to adopt TCF but less likely to adopt P3P [62, p. 292]. This
supports the common sense intuition that TCF was designed to perpetuate
privacy eroding business models.

More generally, we provide evidence in support of the general finding that
private firms deploy economic resources to ensure the adoption of standards [86].
Figure 4.3 shows how Quantcast’s free consent management solution supported
TCF adoption, particularly among less popular sites. The role of institutional
support is crucial even to open standards, such as the organization of TCP/IP
education events [68] and subsidization of free certificates via Let’s Encrypt to
support HTTPS adoption [75]. In terms of migrating to updated standards,
we show how Quantcast boosted TCF 2.0 adoption by adding prominent
deprecation messages into consent dialogs. Thus, Figure 4.7 suggests that IAB
policy (TCF 1.x consent strings becoming invalid) led to Quantcast losing
customers.

Finally, we can quantify the relative decision volume of users relative to
vendors. Quantcast boast of processing 25 billion consent signals [87], whereas
we observed just 2,103 changes in vendor purposes since 2018. This means
users have made at least 11 million times more decisions than vendors since
TCF was launched. At 3.2s per decision [13], this means users have spent
at least 2,500 years since 2018 expressing their privacy preferences through
Quantcast dialogs alone.

4.6.3 Future

Given this startling time investment in sending TCF signals, it is worth
considering what the future holds for pro-privacy signals. Releasing the GPC
specification in an unofficial draft [30] over two years after GDPR came into
effect and ten months after CCPA provided TCF with a first-mover advantage.
However, we have few concerns that privacy aware users will adopt the GPC in
the future. Pro-privacy browsers like Firefox supported the design, additionally
the Brave browser11 and add-ons like Privacy Badger12 already turn the GPC
signal on by default.

We are less optimistic that the intended recipients, namely AdTech vendors,
will adopt the GPC signal. Much like with DNT [4], AdTech vendors are likely
to claim that on-as-default makes the signal meaningless. However, privacy
advocates can now rely on privacy laws like the CCPA, which was not available
when DNT was first adopted by browsers.

Fighting legal cases to establish a favorable precedent is a likely strategy.
One of the GPC’s participating organizations, Brave Browser, has already

11https://brave.com/global-privacy-control/
12https://www.eff.org/gpc-privacy-badger
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lodged complaints under the GDPR against rival browsers [88], national
regulators [89], and even the IAB Europe’s website [90]. We anticipate similar
actions under the CCPA, especially given California’s attorney general tweeted
about the GPC in January 202113. Multiple publishers adopting the same
standard and out-sourcing implementation to dominant CMPs creates the
potential for auditing at scale [p. 10][13], as evidenced by an NGO’s threat of
automated complaints against publishers14.

Regulatory interventions may begin to undermine the adoption of TCF.
For example, the Danish regulator ruled that the Danish Meteorological
Institute could not claim a legitimate interest in collecting personal data [91].
Possibly preempting such a ruling, the option to declare a legitimate interest
in storing and/or accessing information on a device was removed in TCF 2.0
(see Figure 4.11). The case also ruled that opt-out must be as easy as opt-in.
Many websites collecting TCF signals do not follow this ruling [9, 13]. The
leading provider of TCF dialogs distances itself from ambiguity in privacy
law [92] by making the design choice a configuration that websites select, with
one CMP warning “with great customizability comes great responsibility” [13].
This indicates that AdTech vendors perceive liability risk related to TCF.

This discussion raises the question of what happens when two signals
co-exist. Whereas standards usually have a definitive winner, such as DVD
over DIVX or VHS over Betamax [93], GPC and TCF signals can be sent
simultaneously because they are defined on different network layers (see Ta-
ble 4.1). Encouragingly, one could imagine a future in which browsers exploit
control over what is rendered to the user to block dialogs from loading, whereas
AdTech cannot stop browsers from sending GPC headers as part of HTTP
requests. Signals co-existing is more troublesome when it comes to interpre-
tation. A TCF opt-in signal could be sent in an HTTP request with GPC
opt-out headers. We leave it to legal scholars and future court cases to ponder
which signal has priority.

Arguably this back and forth over privacy preference signals has been a
distraction for over 20 years. Regardless of the adoption of privacy preference
signals, there is little basis to trust that expressed preferences will be respected.
In terms of what we can observe: vendors ignoring the DNT signal was
public policy [4], P3P was intentionally misconfigured by websites [1], TCF
consent signals misreport the user’s expressed preferences [8], tracking remains
ubiquitous in a post-GDPR world [78] and there is growing evidence firms use
dark patterns to manipulate users’ expressed preferences [94, 95, 96]. More
fundamentally, there is no way of auditing whether AdTech vendors respect
expressed signals.

13https://digiday.com/media/why-a-tweet-from-californias-ag-about-a-global-privacy-
tool-has-companies-scrambling/

14https://noyb.eu/en/noyb-aims-end-cookie-banner-terror-and-issues-more-500-gdpr-
complaints
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Privacy preference signals must be adopted by both senders (users) and
recipients (AdTech vendors) who have differing requirements. Vendors want
to receive positive consent signals in order to comply with privacy laws, and
prefer not to receive negative signals that undermine the vendor’s business
model. This reasoning helps to explain why hundreds of vendors adopted
TCF [13, 64], which represents a historical anomaly given vendors reluctance
to adopt P3P [1], DNT [28] and NAI opt-out cookies [5]. Our evidence that
vendors were early adopters of TCF 2.0 (Figure 4.9) underlies the AdTech
vendors’ commitment to receiving these signals.

History reveals two approaches to collecting users’ privacy preferences that
are represented in the signal, namely via the user agent (as in P3P and DNT)
or a webpage (as in NAI opt-out). As with the previous signal designed by
AdTech [5], TCF collects user preferences via dialogs embedded in a web page
but this requires adoption among websites. Our results show website adoption
varies from 5% to 12% across sections of the Tranco top 100k (Figure 4.3) and
is most prevalent among News & Entertainment websites (Figure 4.4). We
also show that the presence of Google Ads (Figure 4.6) and the number of
embedded parties (Figure 4.5) are both associated with greater TCF adoption
rates.

Adoption is further supported by AdTech actors like Quantcast lowering
the cost of adopting TCF by providing free dialogs marketed as compliant with
GDPR (although legality has been called into question [9, 8]). The increase
in adoption following May 2018, which can be seen in Figure 4.7, shows how
AdTech capitalised on the passage of the GDPR. This means AdTech firms
now not only draft the TCF, but also actively manage and configure it. This
market power facilitated the swift transition to TCF 2.0 (see Figure 4.8 and
Figure 4.7), which is remarkable when contrasted against the time to migrate
to HTTPS [75] or IPv6 [72].

Thus, our measurements of the present reveal TCF is now the dominant
privacy preference signal. Further, its adoption among both senders and
recipients is a significant historical development (see Table 4.1). Adoption
among recipients is unsurprising given the working group who designed TCF
was controlled by the Interactive Advertising Bureau and contained no privacy
advocates. However, websites appear to have sided with their business partners
over users. Consequently, users are forced to send signals via time consuming
dialogs. Our back-of-the-envelope calculation on p. 4.6.2 suggests over two
thousand years of user time has been spent on sending TCF consent signals
since 2018. All stakeholders should ask to what extent the TCF’s fine-grained,
site-by-site signal clarifying privacy preferences has materially changed how
recipients process personal data? A second question is whether a revised signal
would lead to better outcomes, or can the problems only be resolved by the
technical constraints of hard privacy?
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appendix

Table 4.3: Regression Coefficients for TCF 2.x Adoption

Dependent variable:

TCF 2.x Adoption

(1) (2) (3)

Google Ads 0.150∗∗∗ 0.151∗∗∗ 3.502∗∗∗

(0.043) (0.044) (0.140)

log(# contacted SLDs) 0.765∗∗∗ 0.596∗∗∗ 1.787∗∗∗

(0.020) (0.020) (0.053)

Category: Business −0.436∗∗∗ −0.430∗∗∗

(0.055) (0.055)

Category: Education −1.384∗∗∗ −1.385∗∗∗

(0.098) (0.098)

Category: Government −2.479∗∗∗ −2.506∗∗∗

(0.303) (0.304)

Category: News & Entertainment 0.954∗∗∗ 0.994∗∗∗

(0.031) (0.031)

Category: Shopping −0.885∗∗∗ −0.826∗∗∗

(0.067) (0.067)

Category: Technology −0.487∗∗∗ −0.469∗∗∗

(0.055) (0.055)

Google Ads * log(# contacted SLDs) −1.517∗∗∗

(0.058)

Constant −4.614∗∗∗ −4.189∗∗∗ −6.558∗∗∗

(0.045) (0.048) (0.121)

Observations 92,001 82,326 82,326
McFadden’s Pseudo-R2 0.08 0.13 0.14

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.4: Summary Statistics

Variable N Min Mean Max

TCF 2.x Adoption 92,475 0 0.072 1
Google Ads 92,538 0 0.570 1
log(# contacted SLDs) 92,538 0 2.189 5.004
Category: Business 88,269 0 0.114 1
Category: Education 88,269 0 0.078 1
Category: Government 88,269 0 0.034 1
Category: News & Entertainment 88,269 0 0.210 1
Category: Shopping 88,269 0 0.086 1
Category: Technology 88,269 0 0.132 1
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Figure 4.13: Starting August 5th 2020, Quantcast added a prominent deprecation
message at the bottom of all its customers’ TCF 1.x consent dialogs, prompting
them to switch to TCF 2.0.
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abstract

Privacy laws like the General Data Protection Regulation (GDPR) and the
California Consumer Privacy Act (CCPA) have pushed internet firms processing
personal data to obtain user consent. Uncertainty around sanctions for non-
compliance led many websites to embed a Consent Management Provider
(CMP), which collects users’ consent and shares it with third-party vendors
and other websites. Our paper maps the formation of this ecosystem using
longitudinal measurements. Primary and secondary data sources are used to
measure each actor within the ecosystem. Using 161 million browser crawls,
we estimate that CMP adoption doubled from June 2018 to June 2019 and
then doubled again until June 2020. Sampling 4.2 million unique domains,
we observe that CMP adoption is most prevalent among moderately popular
websites (Tranco top 50-10k) but a long tail exists. Using APIs from the
ad-tech industry, we quantify the purposes and lawful bases used to justify
processing personal data. A controlled experiment on a public website provides
novel insights into how the time-to-complete of two leading CMPs’ consent
dialogues varies with the preferences expressed, showing how privacy aware
users incur a significant time cost.

67



measuring the emergence of consent management on the web

5.1 introduction

Vendors harvesting personal data prefer operating beyond the user’s attention
as evidenced by the use of secret tracking technologies [38, 1, 29]. This
was tolerated by websites who rely on advertising revenues [51]. Sanctions
associated with recent privacy laws threaten this state of affairs. In the EU,
the General Data Protection Regulation (GDPR) requires firms processing
personal data to establish a legal basis, such as by obtaining user consent. In
the US, the California Consumer Privacy Act (CCPA) requires websites to
collect the consent of minors and also to allow users to opt-out of the sale of
their personal data. To comply with both laws, an infrastructure of consent
must be designed so that users can consent to the privacy practices of websites
and Ad-tech vendors.

In the past, each website offered a unique privacy policy and dialogue.
This diversity overwhelmed users who could not commit hundreds of hours to
reading each privacy policy [36, 6] nor navigate novel interface designs without
making errors [2]. Privacy advocates argued that users should set preferences
in the browser to avoid such problems [9, 27, 34], whereas Ad-tech companies
lobbied against standardized privacy. However, the new imperative to obtain
consent creates problems for Ad-tech vendors who must manage and document
heterogeneous forms of consent collected across multiple websites.

Consent management providers (CMPs) emerged in the last three years
to standardize the collection of online consent. These intermediaries define
legal terms and conditions, present these to users via an embedded consent
dialogue, store the resulting signal, and share it with third-parties. In essence,
CMPs have created a consent ecosystem involving users, websites, and third-
party vendors. For example, one CMP allows websites to collect consent for a
‘Global Vendor List’ with a membership fee of 1200e, which was termed the
commodification of consent [60].

The rise of CMPs represents a new stage in how privacy preferences are
communicated, with previous stages including cookies settings in browsers [37]
or custom cookie banners on websites [53]. This paper offers a longitudinal
study of the formation of a consent ecosystem orchestrated by CMPs. We
introduce the notion of a consent flow—from users through consent dialogues
to a website and then onto third-parties—and make measurements at each
interface. This complements post-GDPR related work relying on snapshots of
relatively small samples of domains, which is shown in Figure 5.1.

Our insights include:

• Using 161 million browser crawls, we measure CMP adoption over time
and by website popularity. We show that uptake is most prevalent among
‘mid-market’ sites (50th − 10, 000th), although this varies between CMPs.
We also show the winners and losers of inter-CMP competition in the
form of websites switching CMPs.
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Legend: Web Measurements User Study Timing Measurements

# domains
Degeling et al. [11] (NDSS’19) 6,357

Habib et al. [16] (SOUPS’19) 150

Sanchez-Rola et al. [48] (AsiaCCS’19) 2,000

Utz et al. [56] (CCS’19) 6,357

Van Eijk et al. [58] (ConPro’19) 1,500

Machuletz/Böhme [30] (PETS’20) 1

Nouwens et al. [39] (CHI’20) 10,000

Matte et al. [32] (S&P’20) 22,949

this study
4,753,730Quantcast consent dialog changes

2018 →
J F M A M J J A S O N D

2019 →
J F M A M J J A S O N D

2020 →
J F M A M J J A S

Figure 5.1: Previous studies conducted point-in-time snapshots of small samples
in a rapidly changing environment. For example, the consent prompt of a single
CMP (Quantcast) changed 38 times in our observation period.

• In terms of methodology, we introduce a novel URL sampling approach
seeded by social media shares, which improves subsite coverage. This is
complemented by a traditional toplist sample.

• Using APIs from the Ad-tech industry, we quantify the purposes and
lawful bases used to justify processing personal data. We find many
vendors claiming ‘legitimate interest’, which allows them to process data
without the user’s consent.

• We address gaps in the literature by measuring the time to complete
consent dialogues, highlighting how users incur a significant time cost
when opting out.

Section 5.2 provides information about the consent ecosystem. Section 5.3
describes our measurement approach. Section 5.4 presents our results, which
are discussed in Section 5.5. We identify related work in Section 5.6 and offers
conclusions in Section 5.7.

5.2 background

Section 5.2.1 describes how privacy laws create demand for consent man-
agement. Section 5.2.2 describes the organisations and technical standards
relevant to consent management solutions.

5.2.1 Privacy Laws and Consent

The role of user consent in recent privacy laws is the most significant aspect
for this paper. The GDPR applies to all firms processing personal data, which
entangles Ad-tech trackers and data brokers as well as websites. Such firms can
establish a legal basis for doing so by obtaining user consent (Article 6.1a) or
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User Publisher

CMP

Ad-Tech VendorsGVL

IABconsensu.org

visit
request consent embed embed

provide
vendor data forward

consent

declare
purposes

register
manage

administer

share consent
with other
publishers

Figure 5.2: Surfacing the web’s new compliance engine: Publishers embed CMPs,
which display consent prompts to users, forward consent decisions to ad-tech vendors
and also share it globally across websites. In the background, the IAB orchestrates
this through its Transparency and Consent Framework (TCF).

by claiming a legitimate interest (Article 6.1b–f), such as if the data processing
protects the “vital interests of the data subject or of another natural person”
(6.1d) [47]. If controllers choose to obtain consent, it must be a “freely given,
specific, informed and unambiguous indication of the data subject’s wishes”
(Recital 32) and “documented” (7.1). A data controller infringing either Article
6 or 7 is punishable by “a fine up to e 20 million or up to 4% of the annual
worldwide revenue.”

In the United States, the California Consumer Privacy Act, which came
into effect in January 2020, requires websites to: obtain parental consent for
users under 13; affirmative consent for those under 16; and to allow other
users to opt-out of the sale of their personal data [17]. The CCPA and GDPR
further differ in the obligations on third-party vendors and the definition of
personal information. The resulting uncertainty created a business opportunity
for CMPs who claim to specialize in compliance. The next section describes
the resulting products.

5.2.2 Consent Management Solutions

Ambiguity about how to technically implement the principles of privacy law [7]
led to heterogeneity in consent management solutions. In response, the Internet
Advertising Bureau (IAB) – not to be confused with the Internet Architecture
Board – developed the Transparency and Consent Framework (TCF), “the
only GDPR consent solution built by the industry for the industry” [20]. The
TCF standardizes and centralizes the storage of ‘global’ consent cookies. It
is visualized in Figure 5.2. We describe this technical standard to illustrate
what CMPs do, and also because it is implemented by many but not all of the
CMPs we measure in later sections.
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The first building block of the TCF is the definition of purposes and features
that are shown to users. In TCF 1.0, purposes define reasons for collecting
personal data, for example; personalization, ad selection, or usage analytics.
Features on the other hand describe methods of data use that overlap multiple
purposes, such as combination with offline sources. A full list of purposes and
features can be found in Table 5.2. Both must be disclosed to the users, but
users are only given control over consenting to individual purposes.

The second building block of the TCF is the Global Vendor List (GVL),
a master list of advertisers participating in the framework. The GVL is
maintained by the IAB. Vendors declare the purposes for which they collect
data and the features upon which they rely. They can also declare legitimate
interest for specific purposes, which allows them to process personal data
under the GDPR even if the user does not consent. For each advertiser, the
GVL contains; a name, a link to the advertiser’s privacy policy, the feature
and purpose ids consent is requested for, and the declared legitimate interests.
Registered advertisers pay a yearly management fee of 1.200e. Cookie prompts
implementing the TCF often request consent for all advertisers in this list, even
though the website does not have a business relationship with every vendor.
If the list is updated with new vendors (or additional purposes), users are
prompted with a new dialogue in order to obtain additional consent.

The third building block involves the Consent Management Providers
implementing the TCF on publishers’ websites. They provide the cookie
prompt, store the user’s choice as a browser cookie, and provide an API for
advertisers to access this information. The IAB also maintains a public list for
CMPs, which lists 150 participating providers as of May 2020 [19]. A website
wishing to implement the TCF independently must become a CMP, otherwise
they can out-source this to an existing CMP. In reality, a handful of CMPs
dominate the market.

Beyond the technical standard, IAB Europe also governs the surrounding
ecosystem. The legal terms used in consent dialogues, such as the purposes of
data collection, are standardized in the TCF. Firms adopting the standard
are expected to follow the defined policy and IAB Europe publicizes a tool to
audit CMPs (but not vendors). We go on to provide evidence that the TCF is
inconsistently implemented in practice and not at all in some cases, such as
for CMPs targeting the US market.

5.3 measurement approach

We identify our items of interest (what we want to measure) in Section 5.3.1.
We map the items to a set of indicators and measurement methods that
collectively describe our methodology in Section 5.3.2. Finally, we assess the
threats to reliability and validity of our methodology in Section 5.3.5.
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5.3.1 Items of Interest

The following items (I1–I7) span the consent ecosystem, which is visualized
in Figure 5.2. In particular, the red arrows and pipes with pressure gauges
are the links in the ecosystem that we measure. We know little about the
prevalence of CMPs on the web. This complicates generalizing results about
CMPs from snapshot samples of the most popular websites with size in the
order of thousands, as was done in previous work [39, 32]. In order to build a
fuller picture of the consent ecosystem, we ask: how does CMP adoption vary
according to website popularity (I1), and related, how has this changed over
time and been influenced by legal developments (I2).

The third item of interest relates to publisher behaviour: to what extent do
websites customize the embedded CMP (I3). Privacy laws describe how consent
can be legally collected, violations of which have been studied in [39, 32]. The
responsibility for such violations is far from clear when a website embeds a
CMP, which is especially true when the CMP allows the website to customize
the embedded consent dialogue.

Turning to vendors processing personal data, there are many reasons why
a vendor might do so. Obtaining consent is not the only lawful basis for data
processing. The fourth and fifth items are; why are vendors collecting personal
data (I4), and what is their legal basis for doing so (I5).

One aspect that has not been considered in existing research is the additional
effort required to reject data processing compared to accepting it. In most
experiments, artificial dialogues are pre-installed on the subject’s machine or
loaded from a single source. In practice, users may already be habituated to
the standardized CMP dialogs, but dialogs may need to send consent decisions
to multiple vendors which incurs additional waiting time. This motivates our
items at the user-interface; how long does it take CMPs to distribute consent
decisions (I6), and to what extent does the user’s dialog interaction time vary
depending on which privacy preferences are expressed (I7).

5.3.2 Measurement Methodology

large-scale web measurement To measure the prevalence of con-
sent prompts longitudinally, we analyze automated browser crawls recorded
by the Netograph web measurement platform1 described in Figure 5.3. Ne-
tograph was not built exclusively for this research project and exhibits some
unique properties compared to existing methods. Most prominently, instead
of sampling from a particular toplist at one point in time, our crawlers are
constantly seeded with new URLs shared on social media platforms.

This approach is not a design choice made specifically for our research,
but useful in our context as measurements are not limited to a domain’s
landing page (https://example.com/) but also cover arbitrary subsites

1 https://netograph.io/

72

https://example.com/
https://netograph.io/


5.3 measurement approach

so
ci

al
m

ed
ia

cr
aw

lin
g

T
w

it
te

r
R

ed
di

t
...

≈
5,

00
0,

00
0

U
R

L
s/

m
on

th
C

ra
w

le
r

(E
U

C
lo

ud
)

C
ra

w
le

r
(U

S
C

lo
ud

)
≈

55
0

kB
m

et
ad

at
a

/
ca

pt
ur

e

T
ra

nc
o

10
k

T
op

lis
t

10
,0

00
U

R
L
s/

w
ee

k
C

ra
w

le
r

(E
U

U
ni

v.
)

≈
1.

9
M

B
co

nt
en

t/
ca

pt
ur

e

C
ap

tu
re

D
at

ab
as

e

▷◁

C
M

P
in

di
ca

to
rs

A
na

ly
si

s
(n

or
m

al
iz

ed
by

to
pl

is
t)

F
ig

ur
e

5.
3:

T
he

N
et

og
ra

ph
m

ea
su

re
m

en
t

pl
at

fo
rm

co
lle

ct
s

a
re

al
ti

m
e

st
re

am
of

U
R

Ls
sh

ar
ed

on
so

ci
al

m
ed

ia
an

d
cr

aw
ls

th
em

us
in

g
G

oo
gl

e
C

hr
om

e.
C

us
to

m
br

ow
se

r
in

st
ru

m
en

ta
ti

on
ex

tr
ac

ts
m

et
ad

at
a

su
ch

as
H

T
T

P
re

qu
es

ts
an

d
co

ok
ie

s.
W

e
m

at
ch

ca
pt

ur
es

w
it

h
C

M
P

in
di

ca
to

rs
an

d
us

e
th

e
T
ra

nc
o

to
pl

is
t

to
no

rm
al

iz
e

w
eb

si
te

po
pu

la
ri

ty
.

73



measuring the emergence of consent management on the web

(https://example.com/foo?bar). Recent work has shown that subsites show
a significant different behavior and an increase of privacy-invasive techniques
[55].

Netograph ingests a live feed of social media posts, extracts all URLs, and
submits them into a capture queue. URLs are visited once within a couple of
minutes after submission. Crawls are performed on virtual machines in US
and EU data centers of a large public cloud provider. 50% of crawls are done
from within the EU, each URL is assigned randomly. Websites are opened
using Google Chrome on Linux with its current default user agent2, a desktop
resolution of 1024×800, and en-US as the preferred browser language. All
other settings are set to their defaults: Third party cookies are allowed, the
“Do not Track” HTTP header is not set, and Flash is disabled. Due to the
large volume of URLs, Netograph crawls with relatively aggressive timeouts,
which are discussed further in Section 5.3.5.

For every capture, Netograph collects the following data points using custom
browser instrumentation. First, HTTP headers are logged for all requests and
responses. Additionally, connection-related metadata such as IP addresses and
TLS certificate chains are stored. For every domain in a capture, its relation
to the main page, all cookies, IndexedDB, LocalStorage, SessionStorage and
WebSQL records are saved. Finally, a screenshot of the visible area (without
scrolling) is taken. Netograph does not store page contents due to storage
constraints. All crawl data is stored in a central database, which can be
queried using a custom API. As of May 2020, this database stores 177,868,171

captures or about 23 billion HTTP requests.

toplist-based web measurement To make comparisons with re-
lated work, we have set up an additional Netograph-based crawling infrastruc-
ture for this study based on an internet toplist. In our analysis, we use the top
10k entries from the Tranco list created on 30 January 20203, which aggregates
the ranks from the lists provided by Alexa, Cisco Umbrella, Majestic, and
Quantcast [44]. This sample size is in the order of magnitude of previous
studies (see # domains in Figure 5.1).

We first converted the Tranco list of domains to a list of URLs that can
be crawled. For each domain, we attempted to establish a TLS connection to
www.domain on port 443 and validate the certificate hostname using Mozilla’s
trust store. If the certificate is valid, we used https://www.domain/ as the
seed URL for crawls. Otherwise, we attempted to open a TCP connection on
port 80 and used http://www.domain/ on success. If this also failed, we used
http://domain/ as the seed URL. We repeated this process three times over a
week in order to catch temporarily unavailable domains.

Next, we crawled every URL in the toplist six times in immediate succession:
First, we visited the website from a European university network using our

2 Currently Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/83.0.4103.61 Safari/537.36.

3 Available at https://tranco-list.eu/list/K8JW.
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5.3 measurement approach

crawler’s default configuration. Second, we repeated this capture with an
extended timeout. Third and fourth, we also captured with both German and
British English as the preferred browser language. Finally, we submitted the
same URLs to Netograph’s task queues in the US and EU cloud as a control
group. We retried all unsuccessful captures three times over the span of a
week.

For all toplist crawls, we additionally stored the browser’s DOM tree
including the computed CSS styles. We also recorded a full-page screenshot
(including scrolling). These extended features are not stored for the social
media dataset due to their storage requirements.

prevalence and customization of cmps (i1–i3) In the second
part of our analysis, we measure the prevalence of CMPs using our crawl data.
This involves extracting the final effective second-level domain (by which we
want to count), detecting the CMP in use, and interpolating missing data. For
this analysis we restrict ourselves to six CMPs: The five major players already
identified by Nouwens et al. [39] and LiveRamp, a new entrant that launched
in December 2019.

We measure the market share of CMPs by determining the number of
domains they are active on. As about 11% of all crawls include top-level
domain redirects, taking the domain from a seed URL would be imprecise.
Instead, we extract the domain from the final website address as it would be
shown in the browser’s address bar. We normalize this domain to the effective
second-level domain using the Public Suffix List [13], which contains all suffixes
under which internet users can directly register names. For example, a capture
may start with https://tinyurl.com/... as a seed URL, which redirects to
https://foo.example.github.io/..., which we normalize to example.github.io.

To determine the CMP in use, we inspected the behavior of the six CMPs
under study and created fingerprints for each CMP based on their HTTP
request patterns, CSS selectors, and extracted text. For each CMP, we first
recorded the network traffic of multiple websites where it was embedded and
consulted the documentation provided by the CMP. Second, we assembled
multiple fingerprints of varying specificity (for example, from concrete URLs
to second-level domains) using manual analysis. To make sure that we did
not miss any CMP dialogs, we searched for the GDPR phrases listed in
[11] in our toplist crawls. We then checked the screenshots from our toplist
crawls and discarded all fingerprints that yield false-positives. Finally, we
verified that the remaining fingerprints work accurately for historic data using
Netograph’s captured screenshots. Using this approach, we were able to
identify a unique hostname for each consent dialog framework as a robust
indicator. For example, even though OneTrust deploys very different dialog
designs with no shared JavaScript code or CSS classes, all of them perform
HTTP requests to cdn.cookielaw.org on page load. We list our synthesized
indicators in Table 5.3 for reproducibility.
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Finally, we also need to take into account that the sampling frequency
of a domain is not fixed in our main dataset as the crawler is seeded from
social media posts only. Consequently, we may not see less popular domains
for prolonged periods. We account for this in two ways. First, we interpolate
missing observation periods if both boundary measurements are classified
equally. For example, if we observed Quantcast on example.com a month ago
and observe it again today, we assume that example.com kept using Quantcast
as their CMP throughout this period. If the boundary measurements disagree,
we do not assume the presence of the CMP in the intermediate period. Second,
we account for the fact that our measurements are right-censored by fading out
the presence of a CMP after 30 days if no new measurements have been made
yet. For example, if a website was last measured a week before our analysis, we
assume that they still use the same CMP; if the last measurement was made
on February 1st, we assume no CMP presence as of March 1st. Finally, as we
crawl with a fixed sampling frequency for our toplist-based measurements, we
do not need to interpolate for this dataset.

ad-tech vendor behavior (i4–i5) Recall that Ad-tech vendors
need to declare in the TCF for which data processing purposes they either
request consent or claim legitimate interest. To assess the behavior of vendors,
we systematically analyzed previous versions of the GVL and inspected them
for longitudinal changes. In particular, we measure every instance when an
Ad-tech vendor joins or leaves the GVL, claims a new purpose falls under
legitimate interest, begins requesting consent for a new purpose, stops claiming
either, or changes from collecting consent to claiming legitimate interest or
the other way round.

time to consent (i6–i7) An aspect that has not been studied in the
literature is the relative time taken to express different consent preferences. We
aim to quantify this by embedding the dialogues offered by two leading CMPs,
namely Quantcast and TrustArc. Using real dialogues in a field experiment
improves ecological validity relative to studies using dialogues developed for
research purposes in a lab experiment that result in a very different feel for
the participants who are not browsing normally.

First, we measured how a seemingly small user interface change impacts
the time it takes users to make a positive or negative consent decision. We
embedded Quantcast’s CMP dialog on a popular website on the public in-
ternet for a short period of time in two configurations: One with an explicit
“Reject” button and one that included a “More Options” at the same position
which would then lead to a reject button (see Figures 5.11 and 5.12). This
design is motivated by the French data protection authority’s guidelines, which
demand a real choice between accepting or refusing cookies presented at the
same level [10]. All other dialog settings were left to the default values: The
consent prompt was shown as a modal dialog in the center of the screen,
consent for all vendors on the GVL was requested, the “Accept” button was
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colored more prominently, and the dialog was only shown to visitors from
the EU. We then measured the page load time (DOMContentLoaded), the time
the dialog appeared (__cmp(’ping’,...)4), and the time it was closed as
well as the user’s consent decision (__cmp(’getConsentData’,...)). We also
checked for the existence of already existing global consent cookies by manually
fetching https://api.quantcast.mgr.consensu.org/CookieAccess, which
returns the users’s existing Quantcast TCF cookie. Repeated visitors will not
be counted as the CMP stores the first consent decision and no additional
dialogs will be shown.

Second, we noticed that some CMP dialogs require extended processing
time if users decide to opt out. For example, TrustArc consent prompts
disappear immediately if one accepts cookies, but otherwise make the user wait
for prolonged periods while opt-out requests are being sent to a hodgepodge of
third parties. In our testing, opting out required users to wait tens of seconds,
which could be skipped at any time by giving consent. To make sure that
these observations were not a fluke, we repeatedly visited a website embedding
the TrustArc dialog, automated the opt-out process with a custom Google
Chrome extension, and collected all HTTP requests and timings.

5.3.3 Research Ethics

Our time-to-consent measurements were conducted on a website with real users,
which raises ethical concerns as we did not ask for consent prior to measuring
their interactions with consent notices. We did so to ensure non-biased results,
which is supported by previous research on consent dialogs [56]. We ensured
that we did not harm website visitors and their privacy. We address privacy
issues by data minimization, i.e. we only collected a user’s consent decision
and the timings described in Section 5.3.2. The timings for a single page visit
are linked using a random non-persistent id generated on page load. We do
not create or store any persistent identifiers. While we believe that the second
dialog design may not fulfill the requirements of the GDPR, the website we ran
our experiments on did not perform any personal data collection irrespective
of the user’s consent decision.

5.3.4 Data Sources

Recall that Netograph’s web crawlers are seeded with URLs posted on social
media. More specifically, we ingest all URLs shared on Reddit and 1% of
public Tweets using Twitter’s sample feed5. Note that this does not mean we
see 1% of URLs: each popular URL has multiple chances to be spotted in
the sample feed as it is re-shared and retweeted. So in effect our URL sample
skews heavily towards popular URLs. Overall, Twitter accounts for 80% of

4 The __cmp() function is standardized as part of the IAB’s Transparency & Consent Frame-
work, see Matte et al. [32].

5 https://developer.twitter.com/en/docs/labs/sampled-stream/overview
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all URLs. We skip a URL if we have captured the same domain in the last
hour or the precise URL in the last 48 hours. This applies to about 40% of
all submitted URLs. Our records span March 2018–September 2020, starting
before the inception of GDPR and also covering the introduction of CCPA.

To track the development of the global vendor list, we systemati-
cally downloaded all 215 previously published versions of the GVL from
https://vendorlist.consensu.org/vXXX/vendor-list.json and verified their ac-
curacy using the Internet Wayback Machine. Likewise, we collected the change
history of Quantcast’s consent dialog in the same way.

To measure how long it takes for users to make a consent decision, we
embedded Quantcast’s CMP dialog and our collection script on mitmproxy.org

for a short period of time in May 2020. We logged about 120,000 timestamps.
Importantly for generalizing, the website we hosted our experiment on caters
to a very technical and privacy-concious audience.

For our second timing experiment, we measured the raw waiting time
(not including user interaction) it takes to reject all tracking on forbes.com’s
TrustArc consent dialog. Measurements were performed hourly for two weeks
in May 2020. These measurements were made from a European university as
the vantage point.

The relationship between our items of interest, data sources, and vantage
points is summarized again in the Appendix (Table 5.5).

5.3.5 Reliability and Validity

social media sample bias While existing research is mostly based
on the Alexa and Tranco toplists, our measurement platform is seeded using
URLs obtained from social media posts. An obvious issue with this setup
is that URLs shared on social media are not a representative sample of the
internet. One would reasonably expect YouTube videos to be shared more
than mastercard.com. Hence our sample exhibits a different coverage error
than typical toplist-based studies, which are not representative of the internet
either. Additionally, our choice of social media data feeds is heavily skewed
towards Western culture. We rectify this bias in part by grouping captures by
their effective second-level domain. In other words, popular domains have a
higher sampling frequency in our dataset, but equal weight.

missing data Another threat to validity is that some domains in the
toplist have never been shared on social media. This affects 1021 domains in
the Tranco 10k list. Of these 1021 domains, 305 were not reachable via HTTP
or HTTPS at all in our toplist measurements, 4 did not return a valid HTTP
response and 67 returned an HTTP error status code. 184 domains redirected
to another domain and were counted as the redirect target. The overwhelming
majority (> 90%) of the remaining 461 domains can be considered internet
infrastructure that is not directly accessed by users, such as CDNs.
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Location US EU EU University

User Agent
Timing

OneTrust 341 368 403 412 412 414
Quantcast 173 207 225 229 230 233
TrustArc 107 118 152 157 154 156
Cookiebot 92 97 96 98 99 99
LiveRamp 8 9 14 14 14 14
Crownpeak 8 8 8 9 9 9∑

729 807 898 919 918 925
Coverage 79% 87% 97% 99% 99% 100%

Table 5.1: Occurence of CMPs on websites in the Tranco 10k measured from different
vantage points.

subsites In contrast to previous research, we crawl not only a domain’s
landing page but also arbitrary subsites given by the seed URLs. This increases
the reliability of our results as it allows us to detect CMPs that are only present
on specific subdomains or subsites. However, we also encounter individual
pages that do not include a CMP. For example, some websites do not embed
any external scripts on their privacy policy page. As a simple heuristic, we
classify a website as using a CMP if the CMP is included in at least every
third capture. For 99.8% of all domains, the daily share of CMP captures is
either consistently below 5% or above 95%.

The remaining 0.2% of websites include a set of larger websites who change
their behavior depending on the user’s location, for example by complying
with CCPA in the US but responding with HTTP 451 Unavailable For Legal

Reasons to European visitors.

crawler location Netograph crawls all URLs from virtual machines
rented from a large public cloud provider. Half of all captures are done from
the EU and the US respectively. This matches the recommendations made by
Van Eijk et al. [58] to perform crawls from both inside and outside the EU
for cookie consent notices. As shown in Table 5.1, we observe significantly
more CMP adoption when crawling from the EU. This observation matches
Van Eijk et al.’s finding on vantage point difference and can be explained by
websites that only embed a CMP for EU visitors. Still, many websites choose
to always embed their CMP framework but configure it to only show consent
dialogs to EU visitors.

However, we found that not only the originating country, but also the type
of address space has a significant influence on measurement results. As shown
in Table 5.1, the use of public cloud infrastructure makes us miss about 10%
of all CMP dialogs in the Tranco 10k. We manually inspected the sites in
question and found that this is predominantly caused by anti-bot interstitial
pages offered by popular CDNs. In contrast to the vantage point, the choice
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of browser language settings did not have a significant effect on our web
measurements.

Lastly, we re-iterate our overall point that longitudinal measurements
matter for web privacy measurements: Looking at the same measurements in
January 2020 (see Table 5.4), we see that only 70% of CMP usage is visible in
our measurements from the US. The rise in coverage can be explained by the
increasing adoption of CCPA in recent months.

crawler timeouts Due to the large volume of URLs, Netograph runs
crawls with relatively aggressive timeouts. To determine if a page has finished
loading, it looks at frame load events from Chrome, the timing of requests,
an idle timeout of five seconds and a total page timeout of 45 seconds. We
note that crawls are done with heavy CPU utilization and a comparison with
captures from the desktop might not be apt. In any case, our approach differs
from smaller toplist-based measurements, which can afford much more relaxed
timeouts. We quantify this change in Table 5.1: The timeouts employed by
our measurement platform make us miss about 2% of CMP usage.

choice of toplist To determine website popularity, we used the Tranco
toplist [44]. Tranco aggregates results from other lists such as the Alexa toplist,
is hardened against manipulation, less susceptible to daily fluctuations, and
emphasizes reproducibility by providing permanent citable references. This
decision is on line with recent related work on cookie consent [32]. While
Urban et al. adapt the suggestion in the Tranco paper to remove all websites
with the same TLD+1 [55], we do not perform this in our case as services
may vary in their behavior across TLDs. For example, amazon.com shows a
different consent prompt than the EU version of amazon.co.uk as of May 2020.
A much more important factor which previous work has not elaborated on is
the choice of toplist size. We show in the next section that different toplist
sizes yield significantly different results.

cmp detection We found our detection of CMPs to be robust despite
heterogeneous CMP implementations on different websites. By looking at
network traffic patterns we do not rely on any HTML or DOM parsing, which
we found to be much more unreliable for analyses which we ultimately decided
not to include in this paper. In particular, network patterns often allow us
to detect the presence of CMPs even if the website’s CMP configuration does
not trigger a dialog, for example because we visit a EU-centric website from
the US or vice-versa. However, we acknowledge that our detection accuracy
and robustness is difficult to quantify. We have manually evaluated patterns
on other candidate domains, patterns on specific HTTP requests, patterns
on CSS selectors, and patterns on extracted text to make sure that we do
not miss any CMP implementations. Additionally, we have used the Internet
Wayback Machine to validate that our patterns match correctly on historic
data. The only exception to this is a two-day period in July 2018 when
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CookieBot

Crownpeak
LiveRamp
OneTrust

QuantCast

TrustArc

CookieBot
Crownpeak
LiveRamp

OneTrust

QuantCast

TrustArc

Figure 5.4: Sankey diagram of 414 CMP switches in the observation period (April
2018 to September 2020)

Toplist Size
10 100 1k 10k 100k 1M

2 %
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OneTrust
Cookiebot
TrustArc
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LiveRamp

Figure 5.5: Cumulative CMP marketshare as a function of the toplist size (May
2020).

Quantcast embedded parts of their CMP script for all customers of their
analytics service, a different line of the firm’s business. We manually exclude
this outlier in our calculations. We overcount if a website includes more than
one CMP, but this only affects 0.01% of all captures.

5.4 results

This section is structured according to which part of the ecosystem we are
focusing on; websites and CMPs in Section 5.4.1, vendors in Section 5.4.2, and
the user-interface in Section 5.4.3.

5.4.1 Measuring CMP Adoption

Figure 5.5 shows how CMP adoption varies across the Tranco top million sites.
The y-axis shows the percentage of firms embedding each CMP provider in
the toplist with size corresponding to the x-axis. None of the largest websites
embed the CMPs under consideration, likely because they have the in-house
expertise to implement their own consent management solution. Speaking
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to (I1), CMP adoption is most prevalent among the 50− 10, 000th websites,
especially in the top 1, 000−5, 000th sites. Adoption tails off but never vanishes.

Interestingly, we see that different firms penetrate different sections of the
market. For example, more of the top 100 sites embed Quantcast than the
other CMP providers combined. However, OneTrust has the most customers
among the 500 − 50, 000th sites, although Quantcast are more commonly
adopted in the long tail.

Figure 5.6 shows how this has varied over time (I2). Laws like GDPR and
CCPA coming into effect were significant drivers in CMP adoption, which
suggests consent management solutions are more about regulatory compliance
than improving user experience. However, events relevant to privacy law like
fines or regulatory guidance do not affect adoption. Quantcast’s solution is
targeted at GDPR and they achieved market dominance early on, but their
market growth slowed and was unaffected by the CCPA coming into effect. In
contrast, OneTrust became the market leader by offering a flexible solution
that could be tailored to the requirements of the CCPA. This can be seen in
the share of sites with a EU+UK TLD for each CMP (Quantcast at 38.3%

and OneTrust with 16.3%).

Our longitudinal approach can detect when websites change CMPs. Fig-
ure 5.4 describes the resulting dynamics. Quantcast and OneTrust both win
and lose websites to each other. However, the true loser of inter-CMP com-
petition is Cookiebot who have lost an order of magnitude more websites
than they gained. The appendix contains further longitudinal insights by
showing the CMP marketshare in January 2019, January 2020, and September
2020 (respectively Figure 5.14, 5.15 and 5.16). These three figures show how
OneTrust over-hauled the early market dominance established by Quantcast.

We now turn to how publishers customize consent solutions (I3). CMPs
differ in how much customizability they extend to publishers, we classify
this into closed customization in which the publisher may choose between
finitely many options, and open customization in which the publisher can choose
infinitely many, such as via free-text fields. In addition, publisher customization
occurs when the website implements consent management related functionality
beyond that offered by the CMP. We characterize the observed customization
for the three largest CMPs to illustrate the ways in which this varies. All
reported statistics are based on our measurements from an EU university
vantage point (see Table 5.1) where we have the browser’s DOM tree and full
page screenshots available for inspection.

Our sample includes 414 websites embedding OneTrust displaying a range
of consent dialogues. The majority (61%) offer a conventional cookie banner
with a 1-click accept button and a second button or link leading to a page with
more information and fine-grained controls. Only 2.4% of the sites display
a cookie banner containing an opt-out button with text like “Do Not Sell”,
“Reject/Manage Cookies”, or “Deny All”, although 40% of such banners require
further clicks to confirm the opt-out. A minority (5.5%) of websites include a
‘script banner’ (cookie banners in all but name) with one “Accept” button and
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one “Reject/Manage Scripts” button. Rather than showing any banner, 7.5%
of the websites in our sample included a link to cookie or privacy information in
the website footer. The link text was some variant of “Do Not Sell”, “California
Privacy Rights”, or “Privacy Policy” in 11, 15 and 4 websites respectively. Two
of the latter showed cookie banners only when accessed from a US IP.

Quantcast’s dialogues are more standardized. Barriers contain two buttons,
the first of which allows the user to provide consent to the publisher and
partners in one click. Closed customizability is offered as a choice between
the second-button rejecting all or it leading to a second page with more-fine
grained options. Of the 233 websites embedding Quantcast in our sample,
55% offer a 1-click reject all. The text on each button is an interesting
example of open-customization and we find that 87% use some variation of
"I agree/consent/accept", including non-English language translations. The
publishers who do not (13%) use free-form texts including "Whatever", "Sounds
good", and "Accept and move on" that may not qualify as affirmative consent.

TrustArc dialogues display more closed-customization in terms of button
structure but have much less open-customization in terms of button wording.
Of the 156 websites embedding TrustArc: 7% have a dialogue with a first-
page button that instantly opts out; 12% have a first-page opt-out that must
establish a connection with multiple partners (we measure the time to do
so in Section 5.4.3); 44% include a first-page button that implies the user
has autonomy; 31% have a link or button that does not imply the user has
control; 4.4% hide their dialogue from EU IP addresses. TrustArc dialogues
tend to define essential cookies for which there is no opt-out option. This, in
combination with hiding dialogues from EU users, results from the product
being tailored to the CCPA.

Finally, we estimate that about 8% of websites use CMPs for their APIs
only and design custom consent dialogues themselves. This form of publisher
customization presents a very practical problem: while these websites collect a
standardized form of consent, each website does so in their own unique way,
which may or may not comply with local legislation. As CMPs share consent
across websites [60], this unreliable consent signal will then be re-used by other
websites and third parties.

5.4.2 Measuring Third Party Vendors

The next two items of interest concern the purposes and lawful basis claimed by
vendors for processing personal data. Using conventional methods, estimating
how third-parties use personal data would require accessing and processing the
privacy policy of each, which could be costly if repeated for longitudinal insights.
In contrast, the IAB’s standard allows us to measure this longitudinally for
vendors on the Global Vendor List (GVL). In fact, the organization managing
the GVL switched to weekly updates so we can detect all changes.

Figure 5.7 speaks to I4. It shows that both the size of the number of
vendors and the reported purposes in the IAB’s Global Vendor List have grown
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0 100 200 300 400 500

Information Storage
and Access

Personalisation

Ad selection,
delivery, reporting
Content selection,
delivery, reporting

Measurement

Legend
legitimate interest consent

total # of vendors
using purpose

purpose extension /
reduction

claim / withdraw

Figure 5.8: Purposes recorded in the IAB Global Vendor List

over time, with a sharp spike as GDPR came into effect. The first purpose,
which allows vendors to collect and access personal data, is always the most
popular. In Figure 5.7, it is difficult to track which movements are due to
firms joining and which are due to an existing coalition member changing.

The changes made by existing members are summarized in Figure 5.8.
This shows the surprising result that on net more vendors are now obtaining
consent for purposes they used to claim as a legitimate interest than the other
way round, which speaks to I5. This suggests that as time has passed, vendors
on the GVL are obtaining more consent. The most activity regarding these
changes took place around GDPR coming into effect, followed by another bout
of activity in March and April 2020, possibly as vendors saw how GDPR was
being enforced.

5.4.3 Measuring the User-Interface

Our results conclude with some findings regarding time costs related to consent
dialogues. Our first item of interest here is the time it takes to send consent
signals to multiple vendors (I6). We repeatedly measured the user’s waiting
time when they opt-out on a consent dialog provided by TrustArc and report
the median numbers here. Figure 5.9 shows the opt-out process, which takes
at least 7 clicks and 34s to complete (not including user interaction). This
delay results from sending opt-out requests to multiple third parties and
additional JavaScript timeouts. Compared to accepting cookies, opting out
causes an additional 279 HTTP(S) requests to 25 domains, which amounts to
an additional 1.2MB/ 5.8MB of data transfer (compressed / uncompressed).
Thus in 12% of the websites embedding TrustArc (see Section 5.4.1), opting
out is associated with a significant time and network cost for the user.

Second, we measured how the dialog interaction time varies depending on
which privacy preferences are expressed (I7). Instead of using an artificial
dialog design, we conducted a randomized experiment using Quantcast’s real
consent dialog in two different configurations further described in Section 5.3.2.
In short, the first configuration included a direct reject button which was
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(1)

(2)

(3)

(4)

(5)

(6)

≈ 17s

≈ 17s

Figure 5.9: Training users to accept: Opting out on forbes.com takes at least
34 seconds (and seven clicks). Accepting cookies closes the dialog immediately.
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Figure 5.10: Randomized experiment with real CMP dialogs: depending on the
dialog design, denying consent may take significantly longer than giving.

replaced with a “More Options” button in the second one (see Figures 5.11–
5.13). Section 5.4.1 showed that the first and second option were respectively
used by 55% and 45% of websites embedding Quantcast dialogues. We exclude
users who made no decision within the first three minutes after page load.
In total, consent dialogs were shown to 2910 visitors from the EU (as per
Quantcast’s default configuration).

Our results are summarized in Figure 5.10: If Quantcast’s dialog with a
direct reject button is shown, it took the median user 3.2s to accept and 3.6s to
deny consent. This difference is small but already statistically significant using
a nonparametric test that is robust to skewed distibutions (Mann–Whitney
U(Naccept = 1344, Nreject = 279) = 166582, z = −2.93, p < 0.01). If no direct
reject button is shown, the median time it takes users to deny consent doubles
to 6.7 seconds, which is highly significant (U(Naccept = 1152, Nreject = 135) =

30494, z = −11.57, p < 0.001). Additionally, the consent rate increases from
83% to 90%. In summary, we find that depending on the dialog design, the
interaction time increases greatly for users who intend to opt out.

5.5 discussion

Section 5.5.1 discusses measurement issues like sampling and generalizing.
Section 5.5.2 discusses the prevalence, significance, and future of consent
management provision.

5.5.1 Methodological Implications

social media sampling Sampling URLs from social media posts is
a novel approach through which we captured 161million web pages from 4.2

million unique domains over a period of 2.5 years. This significantly exceeds
the sample size and windows used in related work (see Figure 5.1). Building
on recent approaches [55], subsite sampling is more tolerant to the many
idiosyncrasies regarding how CMPs are embedded in the wild. At the same
time, this sample is influenced by the social media websites’ content filtering
policies and–more importantly–heavily skewed towards the ‘attention economy’.
Such websites tend to be funded by collecting personal data, for which consent
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needs to be obtained. This bias is useful as we are more likely to sample
websites that include CMPs.

We complement our social media crawling with a more traditional approach
using the Tranco toplist. This means the proportions we estimate in Figures 5.5
and 5.6 are not affected by the social media sampling bias. However, top-lists
are not representative of a meaningful population either, such as total web-page
views or distinct sites visited by users. Given that both bottom-up sampling
from social media posts and top-down sampling from toplists over-samples
a certain population [49] with no ground-truth to adjust for it, using both
approaches seems a defensible way forward.

web privacy measurements The notion that a web-page has a single
set of observer-independent privacy features is dead [58]. We demonstrated
that CMP adoption is influenced by local legislation and measurement results
depend on vantage point (see Figure 5.1). Future studies should consider this
and explain the implications for generalizing findings if only one vantage point
is used.

Similarly, the occurrence of CMPs varies greatly depending on the toplist
size (see Figure 5.5). From 4% in the Top 100, it reaches 13% in the Top 1k,
and then falls in the long-tail down to 1.51% for the Top 1M. These stark
differences emphasize the importance of both sample size and choice of toplist
from which it is drawn.

Web scraping can exploit common code structure across websites embedding
CMPs. Such research designs can be scaled across the long tail of website
popularity, which complements the qualitative analysis of tech giants [18].
However, it is not clear how such results generalize beyond websites employing
CMPs. Similarly, we do not know how our results, based on six of the most
popular CMPs, apply to niche CMPs6 or websites self-implementing the TCF
framework.

measuring ad-tech behavior Given frameworks such as the TCF,
the legal basis for third-party vendors can now be publicly queried and measured
over time (see Figures 5.7 and 5.8) whereas previously this information was
stored on corporate networks. However, these frameworks only provide self-
reported privacy policy. It remains a challenge to audit compliance.

5.5.2 Privacy Implications

prevalence We observed that CMPs are embedded in ever more websites
over time and that privacy laws coming into effect caused spikes in adoption.
The few times the GDPR was enforced had little observable effect (see Fig-
ure 5.6), although this could change if sanctions increase in frequency or
significance. There is further churn between CMPs with Cookiebot functioning

6 Examples include Kochava, Adzerk CMP, and PreferenceManager.
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as a ‘gateway CMP’ that many websites adopt before migrating onto other
CMPs (see Figure 5.4).

significance CMPs are standardizing privacy communications. The
resulting legal terms, dialogue interface, and protocol for communicating with
vendors should be seen as a de-facto standard, at least among that CMP’s
customers. Such standards were developed by self-interested private companies
and not in the open bodies like the IETF or W3C, which raises questions about
the politics of standards [26]. More positively, the consistent web interfaces
provided by CMPs help researchers discover possible privacy violations at
scale [39, 32], which mirrors researchers auditing compliance to credit card
security standards [46, 31].

Beyond technical standards, CMPs can also influence social norms around
privacy by herding websites. This can be seen in the linguistic shift from
cookies to scripts that was only observed in 5.5% of the websites embedding
OneTrust. This is likely a strategic move to escape the negative associations of
cookies [54]. Herding may also strengthen the widely documented habituation
effect in both privacy [5, 59, 24] and security notices [12].

Compliance with privacy laws drives CMP adoption, as evidenced by the
spikes after the laws come into effect, and yet liability for violations is an
open question. Quantcast maintain that “with great customizability comes
great responsibility”, which suggests they believe websites are liable for using
terms like “whatever” as an affirmative signal of consent. Yet Quantcast offer
dialogue functionality in which accepting takes 1-click while rejecting takes
multiple, which is adopted by 45% of their customers, despite the French
regulator’s guidance against this practice [10].

Buttons allowing 1-click rejection are even rarer among websites embedding
TrustArc (7%) and OneTrust (2.4%). The CMPs may know something its
clients do not given trustarc.com implements an instant, 1-click reject all
button. Disentangling whether these differences are driven by CMP business
practices or pre-existing customer characteristics (e.g jurisdiction) can help pri-
oritize regulatory interventions. The role of intermediaries in (not) preventing
abuse is an endearing lesson from information security economics [35, 52, 8],
why would privacy economics be any different?

The specter of liability looms over vendors claiming a legitimate interest
rather than obtaining consent [33]. For every purpose in the TCF, at least
a fifth of the vendors claim they do not need to collect consent to process
personal data (see Figure 5.8). More generally, one might ask why websites
agree to collect consent for all of the Global Vendor List given there is no
observed benefit to doing so [60].

the future of consent management If trends during the for-
mation of the ecosystem continue, Figure 5.4 suggests that certain CMPs
(Quantcast, OneTrust) will win market share from the others. A theoretical
model predicts that sharing consent between the CMP’s customers will create
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winner takes all dynamics leading to one global coalition [60]. In reality,
jurisdictional boundaries will likely lead to multiple distinct coalitions given
Quantcast and OneTrust appear to be establishing dominance in the EU+UK
and the US respectively. However, users do not respect such jurisdictions.
This will likely exacerbate the extent to which the web differs based on where
the user appears to be located, which we observed at multiple points in this
study.

The rise of CMPs should be seen as part of a wider process by which legal
compliance shapes the internet. Liability for content shared on technology
platforms provides another example [15] in light of a May 2020 executive order
in the US. This represents a departure from utopian views of the Internet as
a libertarian paradise [3]. One might begin to consider a compliance layer
of the internet driven by the content and privacy policies of private firms
as influenced by national laws. Before regulators demand measurements as
evidence, the community should reflect on how to support auditing at scale,
evidential standards, and surrounding ethical issues.

5.6 related work

Returning to the piping metaphor of Figure 5.2, consent flows from a user’s
privacy preferences through a consent dialogue to the recipient of the consent
signal and then on to third-parties. This section identifies related work at
each interface, though none of the studies make measurements at as many
interfaces as we do.

Qualitative research exploring privacy preferences of users informs internet
design by, for example, identifying disparities between what users want and
what happens online [4, 23, 40] or by highlighting the business value of obtaining
explicit consent [61].

At the user-interface, lab experiments have consistently shown users can
be shifted towards providing consent by changing framing [5, 2] and design
choices, such as default settings [28, 30] and positioning [56]. Nouwens et al.
[39] scrape post-GDPR UK websites to identify popular design choices and
show that common practices like not having fine-grained controls on the first
page increases propensity to consent. Our controlled experiment with real
CMP dialogs on a public website complemented this body of work by showing
users incur differing time costs based on the privacy preferences they express,
highlighting how this punishes privacy aware users.

The next point of the consent flow concerns how consent dialogues interact
with websites. Around 50% of the websites in [39] do not offer a 1-click opt
out, which is confirmed by our samples of Quantcast websites. A dialogue or
cookie banner may not even be shown. Degeling et al. [11] showed that 62 % of
sampled European websites displayed cookie prompts right after GDPR came
into effect in May 2018, up from 46 % in January 2018. However, these effects
are not limited to Europe as websites in the US “approach cookie regulations
similarly to the EU” [48], though this is not true of Chinese websites.
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Turning to third-parties, research has predominantly focused on the extent
of third-party tracking rather than how third-parties obtain consent (the final
part of the consent flow). Iordanou et al. [22] introduce a methodology for
measuring tracking at scale and show that the majority of tracking flows across
European borders but, surprisingly, remains within the EU. Sørensen and
Kosta [50] do not establish any change in the number of third-party trackers
before and after GDPR, although they show that third-party tracking is more
prevalent in private websites than public. Even after GDPR, Sanchez-Rola
et al. [48] show that 90 % of sampled websites use cookies that could be used
to identify users. Such results are hard to evaluate without more context. For
example, a website needs to identify users who have not consented in order to
not repeatedly present consent dialogues, which would violate the California
Consumer Privacy Act.

Basing measurement on the TCF standard provides a way forward, Matte
et al. [32] analyze sites using the TCF and find disparities between which
preferences were communicated and which were stored as global cookies, which
is more reliable evidence of a privacy violation. For example, 12 % of websites
send the consent signal before the user even makes a choice and some even
record the user’s consent after an explicit opt-out. In a different study, the
same authors argue that the purposes in the TCF are not specific or explicit
enough “to be used as legally-compliant ones” [33] and measure which vendors
claim these as a legitimate interest.

Finally, a theoretical work [60] considers the economic implications of
CMPs forming ‘consent coalitions’ in which consent is shared across websites
and vendors. Our measurements contradict their theoretical prediction about
a ‘global coalition’, which does not exist at present. The market will, however,
further mature and our longitudinal results suggest a trend towards dominant
CMPs in particular jurisdictions.

Considering our contribution to each aspect of online privacy in isolation
obscures how our measurement approach allowed us to make longitudinal
measurements across the entire consent ecosystem. Similar ecosystem wide
measurements include those of: the advertising industry [14, 45, 43, 42];
online gaming [41]; VPN services [25, 21]; web communities [63, 62]; and web
porn [57]. All of these studies, including ours, blend technical measurements
with considerations around the economic and social factors influencing the
agents in the ecosystem. Such studies provide a rigorous, empirical basis for
how social scientists theorize about the impact of the Internet.

5.7 conclusion

Recent years have seen the formation of a consent ecosystem through which
websites and third-party vendors establish a legal basis for business models
based on personal data. Our longitudinal approach tracks the rise of CMPs
from less than 1% of the Tranco 10k toplist in February 2018 to almost 10%

in September 2020 and we show that privacy laws (GDPR and CCPA) coming
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into effect caused spikes in adoption. We document inter-firm competition
by which certain CMPs (e.g Cookiebot) bleed customers while others slowly
establish dominance in a specific jurisdiction, such as Quantcast in the EU+UK
or OneTrust in the US. This increasing market dominance allows private actors
(often tied to the Ad-tech industry) to standardize the terms user consent to,
the user-interface through which they do it, and also how it is shared with
third-parties.

Although increasing market power is worrying, the same standardization
opens up novel measurements opportunities. We tracked how third-party
vendors justified their data processing activities, capturing changes over time
like the shift towards obtaining consent. Similarly, we showed how the consent
dialogues offered by CMPs impose a time cost on privacy aware users. These
exact dialogues are used by the CMP’s customers, which improved the ecological
validity of our real-user study. More generally, regulators could exploit the
structure provided by CMPs to audit privacy practices at scale.
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appendix

Purposes Definitions

1 Information storage and access: The storage of information,
or access to information that is already stored, on your device such
as advertising identifiers, device identifiers, cookies, and similar
technologies.

2 Personalisation. The collection and processing of information
about your use of this service to subsequently personalise adver-
tising and/or content for you in other contexts, such as on other
websites or apps, over time.

3 Ad selection, delivery, reporting. The collection of information,
and combination with previously collected information, to select
and deliver advertisements for you, and to measure the delivery
and effectiveness of such advertisements.

4 Content selection, delivery, reporting. The collection of
information, and combination with previously collected information,
to select and deliver content for you, and to measure the delivery
and effectiveness of such content.

5 Measurement. The collection of information about your use of
the content, and combination with previously collected information,
used to measure, understand, and report on your usage of the
service.

Careful readers may note that “information storage and access” is not
a purpose for personal data processing in itself, but an artifact of the
obligations imposed by Article 5(3) of the ePrivacy Directive.

Feature Definitions

1 Offline data matching. Combining data from offline sources
that were initially collected in other contexts with data collected
online in support of one or more purposes.

2 Device linking. Processing data to link multiple devices that
belong to the same user in support of one or more purposes.

3 Precise geographic location data. Collecting and supporting
precise geographic location data in support of one or more purposes.

Table 5.2: Purposes and features as defined in version 1 of the IAB’s Trust and
Consent Framework.
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CMP Unique Hostname

OneTrust cdn.cookielaw.org
Quantcast quantcast.mgr.consensu.org
TrustArc consent.trustarc.com
Cookiebot consent.cookiebot.com
LiveRamp cmp.choice.faktor.io
Crownpeak iabmap.evidon.com

Table 5.3: Hostnames used as an indicator for the presence of a CMP (see Sec-
tion 5.3.2).

Location US EU EU University

User Agent
Timing

OneTrust 263 306 344 339 342
Quantcast 151 192 222 220 221
TrustArc 102 110 170 168 168
Cookiebot 82 90 92 92 92
LiveRamp 6 6 10 10 10
Crownpeak 9 10 34 35 34∑

613 714 872 864 867
Coverage 70% 82% 100% 99% 99%

Table 5.4: Occurence of CMPs measured in January 2020. Comparing this to the
May 2020 data in Table 5.1, we see that a growing share of websites adapt CMPs
outside the EU, likely prompted by non-EU regulations such as CCPA.
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Figure 5.11: Default version of Quantcast’s consent dialog. The dialog is shown as a
modal popup with a dark-gray background covering the rest of the page.

Figure 5.12: Quantcast’s consent dialog without direct reject option.
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Figure 5.13: Dialog shown to users after they click “More Options”.
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Toplist Size
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Figure 5.14: CMP Marketshare (January 2019).
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Figure 5.15: CMP Marketshare (January 2020).
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Figure 5.16: Cumulative CMP marketshare as a function of the toplist size (May 2020).
This is a repetition of Figure 5.5 included for better comparison.
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abstract

Since the passage of the General Data Protection Regulation (GDPR) in
Europe, many websites employ cookie dialogs to obtain consent from users.
Previous research has shown that AdTech regularly uses dark patterns in
these dialogs to trick users into consenting. This paper goes beyond the user
interface and sets out to analyze whether clicking “Reject All” in a cookie
dialog does actually stop the data processing.

We perform manual and automated end-to-end measurements in which
we first create personalized browser profiles, and then measure how different
consent signals affect observed ad personalization. Our user study with 2093
website observations shows that many AdTech providers do indeed respect
negative signals and stop showing personalized ads. We attempt to automate
our measurements and instrument major browser engines from different vantage
points using multiple crawling strategies. However, we find that the effects
of privacy preference signals are hard to measure at scale due to AdTech’s
anti-bot measures.

While our main result is a positive one (AdTech respecting privacy prefer-
ence signals), we suggest that this is simply because the risk of non-compliance
currently outweighs the profit that could be gained from the small minority
of users who do not give consent. With regulators enforcing easier opt-out
mechanisms, measuring compliance will become increasingly necessary.
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6.1 introduction

For more than 20 years, stakeholders in the web ecosystem have tried to
standardize signals that represent how users want their personal data to be
processed. For example, the World Wide Web Consortium’s Do Not Track
(DNT) working group proposed a simple HTTP header users could send to opt
out of tracking [1]. However, standardization failed after advertising companies
withdrew from the standardization process and announced their intent to ignore
the signal in 2013 [2]. More recently, in reaction to the European Union’s
General Data Protection Regulation (GDPR) enacted in 2016, a coalition
of advertisers has successfully established a new standard, the Transparency
and Consent Framework (TCF) [3]. Website owners use TCF to collect user
consent in cookie dialogs, and then forward a standardized TCF signal to all
embedded third parties. What all signals have in common is that they are soft
privacy technologies. In contrast to hard privacy like encryption, they rely on
the receiving entity to be trustworthy and respect the user’s preferences.

A key question for privacy preference signals such as the TCF is whether
third parties are compliant and do not start processing personal data unless
they are given consent. After all, advertisers have monetary incentives to
build extensive user profiles, which is at odds with respecting privacy-aware
users’ wishes. There is anecdotal evidence that compliance may not be taken
too seriously by some players in the ecosystem: Pesch interviewed advertising
companies and found that some only joined the TCF’s vendor list because
business partners required membership, claiming their own data processing
would not require consent [4]. This suggests that data protection agencies
should look for ways to detect illegal data processing. Privacy laws such as
GDPR can only be effective if they are enforced by the respective authorities [5].
If compliance of AdTech vendors cannot be measured, there is little incentive
to adhere to users’ requests.

Researchers have tried to answer the question of compliance by checking
whether the user’s browser transmits the correct TCF signal in its HTTP
requests to third parties [6, 7]. This method uncovers obvious privacy violations
where the user’s decision is already misrepresented by the (first party) website
owner to third parties, but it does not help understand whether the signal-
receiving third parties are compliant. Measuring this part of the ecosystem is
difficult as server-to-server transfers are not visible to end users. In particular,
the intransparent usage of TCF in real-time bidding (RTB) online ad auctions
has been criticized by privacy advocates [8, 9]. In response to formal complaints,
the Interactive Advertising Bureau, which governs the TCF standard, has
launched a vendor compliance program in September 2021 [10, 11]. However,
this approach has been dismissed by the complainants as being “unable to
establish transparency and control” [12].

In this paper, we propose a method to monitor AdTech vendor compliance
with end-to-end measurements of ad personalization (see Figure 6.1). Users
first prime a browser profile with specific interests, for example by visiting
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Personalized
Browser
Profile

visit website Accept Tracking

Reject Tracking

Found personalized ads?
yes no

� violation

ok

ok

ok

Figure 6.1: The high-level research approach in this paper is as follows: Using
browser profiles primed with specific interests, a series of websites is visited. On
each website, the user accepts or rejects all tracking. If no consent was given, the
presence of personalized ads is taken as an indicator for unlawful data processing.

related websites and searching for relevant terms. This process collects cookies
and other tracking identifiers, which can then be picked up by AdTech. In a
second step, they visit general interest news websites where they either accept
or reject all tracking in the consent dialog. If no consent is given to personalize
ads and all vendors behave correctly, advertisements for the primed interests
should be highly unlikely to appear. Seeing a statistically significant amount of
personalized ads would demonstrate misconduct by the website or embedded
AdTech parties.

The first contribution of this paper is a manual user study based on this
method. Using 44 manual measurements of 50 news websites each, we show
that rejecting a consent dialog stops most, but not all, ad personalization.
Curiously, when users are instructed to also object to data processing based on
legitimate interests (an advanced — usually well-hidden — opt-out mechanism
available in TCF consent dialogs), a significant fraction of websites stops
showing advertisements. This behavior is surprising insofar as the same
websites were capable of showing non-personalized ads when the user did not
perform this additional step.

The second contribution of this paper is the automation of the measure-
ments. As part of our instrument validation, we show that the choice of
Consent Management Provider (CMP) — the company that provides the
standardized TCF cookie consent dialog for websites — influences the TCF
signal that is communicated to third parties. We show that two major CMPs
allow customers to hide the legitimate interest opt-out mechanism, a feature
that is used by 10% and 15% of their customers. Comparing our automated
and manual measurements, we find that our automated approach only captures
a significantly smaller effect size, which can be attributed to measurement
errors due to AdTech’s anti-bot measures.

Second 6.2 provides background on relevant laws, the TCF, and related
work. Second 6.3 describes our measurement methods. Section 6.4 presents
the results. Section 6.5 discusses the results. Section 6.6 concludes the paper.

6.2 background

gdpr Since the GDPR [13] came into effect in 2018, all organizations
offering goods or services to customers in the European Union must have a
legal basis for processing their personal data. The GDPR defines possible
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bases, most importantly consent and legitimate interest (Article 6.1). Consent
is an opt-in mechanism. It must be “freely given, specific, informed and unam-
biguous indication of the data subject’s wishes” (Recital 32) and “documented”
(Article 7.1). Legitimate interest is an opt-out mechanism, but the firm must
additionally demonstrate that the interest is legitimate, the processing is nec-
essary, and balanced against the rights of data subjects (Article 6.1f). Recital
47 clarifies that individuals should reasonably expect the processing. One
example for a legitimate interest would be fraud prevention, but Recital 47
adds that “processing of personal data for direct marketing purposes may be
regarded as carried out for a legitimate interest.”

tcf The TCF standard was developed by the Interactive Advertising
Bureau Europe (IAB Europe), a coalition of advertisers, in reaction to the
GDPR’s data processing requirements. In short, it standardizes how users can
consent to data processing. Under the TCF, website owners embed a Consent
Management Provider (CMP) on their website, which displays a cookie consent
dialog to visitors. The CMP records the user’s decision and stores it as a
standardized consent string. All other third parties embedded on the website
can then use a standardized JavaScript API (__tcfapi [14]) to obtain a copy
of this signal, which documents that they have a legal basis for their processing.
In addition, the CMP discloses to the user that firms may be processing data
based on legitimate interest, and provides the user with an option to object
to such processing. A website wishing to implement the TCF independently
must become a CMP, otherwise they can out-source this to an existing CMP.
In reality, a handful of CMPs dominate the market [6].

The dialogs provided by CMPs are generally designed with AdTech’s interest
in mind. Existing research has repeatedly documented the dark patterns
employed in consent dialogs to trick users into consenting [15, 16, 17, 18].
Consent rates of leading CMPs are reported to be well above 90% [19].

behavioral advertising Closest to our research is the 2012 work of
Balebako et al. [20], which measures the effect of opt-out cookies, blocking
tools, and DNT headers on advertising personalization. They find that opt-
out cookies and blocking tools reduce personalization, but sending a DNT
header does not. We adopt their idea of using an engagement-related interest.
AdTech’s disregard of DNT is replicated without citing in a 2015 study [21].

The seminal work of Guha et al. [22] lays out fundamental challenges in
measuring online advertising systems, but does not discuss the significance
of anti-bot measures (which may not have been as much of an issue in 2010).
The authors propose robust metrics to quantify the change in text ads between
different browser profiles. Wills and Tatar [23] examine how (manually)
controlled browsing influences the ads shown to users and interests shown in Ad
Preference Managers. Hannak et al. [24] develop a methodology for measuring
personalization in search results and investigate the influence of factors such as
user agent and measurement location. Englehardt et al. [25] discuss engineering
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Figure 6.2: Manual Ad Personalization Measurements

challenges for web privacy measurements, which are particularly relevant in
our context w.r.t. anti-bot measures. Barford et al. [26] develop a scalable
crawler to capture 175k distinct display ads. Similar to this work, they create
personalized browser profiles by visiting a set of interest-specific sites.

6.3 method

We perform our personalization measurements both manually (where study
participants control the browser) and in an automated fashion (where browser
instrumentation is used). Section 6.3.1 describes the study design for the first
approach, Section 6.3.2 describes the technical implementation of the second.

6.3.1 Manual Measurements

To test whether our measurement approach captures the expected effects, we
performed manual measurements with the help of 29 graduate students at
the University of Innsbruck, Austria in November 2021. Our study design is
shown in Figure 6.2. Students first attended a two-hour lecture covering data
protection law, GDPR terminology, and the TCF ecosystem as a regular part
of a privacy and information security course. Next, we explained the objective
of our study, the study design, and the potential side effects described below.
The full study briefing document can be found in the appendix (Listing 6.1).
We opted for such a detailed approach to make sure that students could make
an informed decision on whether they would like to participate in the study.
Students were then given the free choice to participate in the experiment in
return for free beer (the majority of students opted not to go home).
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Next, students were asked to make a choice on whether they would like
to use their personal browser profile or whether they would like to use a
separate/incognito profile for the study. Based on previous experiences we
explained that using an existing profile could be helpful not to trigger anti-bot
measures, but they were free to pick either option. Irrespective of their profile
choice, students were instructed to disable any adblocking or anti-tracking
browser extensions as well as VPNs.

To prime their browser profiles with a common interest, students browsed
the web for ten minutes pretending to be someone who is planning to propose
to their significant other. We picked this specific scenario for three reasons.
First, only a small subset of the population is actively planning their engage-
ment, which means that relevant ads are unlikely to be shown if nothing is
known about the user. In contrast, ads for food or cars target much wider
demographics and would be harder to attribute to personalization. Second,
consumers looking for engagement rings have a high willingness to pay, which
makes them an attractive audience to target. Finally, the IAB’s Content
Taxonomy (which is often used to target ads) has dedicated categories for
this life event [27], which makes it easy for advertisers to reach out to this
audience.

After priming their browser profiles, students were instructed to visit 50
news websites individually sampled for each student from the agof’s Nov. 2021
toplist of 377 German digital media companies [28]. We picked this list instead
of the more common Tranco [29] and Alexa [30] toplists because all included
publishers serve ads, generally cater to wide audiences, and are active in
the DACH (Germany (D), Austria (A), Switzerland (CH)) region. Each
student was then assigned an experimental treatment in the form of either
(1) unconditionally consenting to all data processing or (2) rejecting as much
tracking as possible, i.e., also object to legitimate interests if such an option is
provided by the website. We considered having students alternate between
consenting and objecting, but deemed a constant strategy to produce more
reliable measurements. For each visited page, students reported whether they
observed personalized ads relating to the primed interest, generic ads, or no ads
at all. All personalized ads were additionally documented with a screenshot.

Already during the measurements, we discovered that students in the
reject group were seeing significantly fewer ads than expected, even though
all adblockers were turned off. One hypothesis for this change was that the
concentrated activity from the same IP range had been flagged by bot detection
systems. We also considered that the lack of ads may have been triggered
by the explicit objection to legitimate interests, which we only added after
pretesting the study design.

To test both hypotheses, students were asked to repeat the measurement
from home. We extended the existing study design with a third treatment in
which users rejected tracking, but did not object to legitimate interests. Again,
participation in this part was voluntary. Results were submitted anonymously
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Figure 6.3: Automated End-to-End Ad Personalization Measurement Pipeline

so that students could be sure not to face negative consequences from not
participating.

6.3.2 Automated Measurements

A distinct problem with the manual measurements is that attribution is difficult.
While we can observe personalized ads, we cannot tell from a screenshot
which third party is ultimately responsible for serving them. In contrast,
an automated measurement allows us to record all traffic and investigate
retrospectively. Additionally, users may receive seemingly personalized ads
by chance, and we need a statistically significant amount of observations
to confirm misbehavior. This motivates the development of an automated
measurement platform. We provide a high-level overview in Figure 6.3 and
explain the individual components shown there next.
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generating primed browser profiles. Before we can perform a
measurement, we first need a primed browser profile with cookies and other
tracking identifiers that indicates the topic we pretend to be interested in.
We cannot reuse the same browser profile because the initial priming effect
fades out as other (generic) websites are visited during the measurement. This
means that we first need a way to automatically prime fresh browser profiles.
To accomplish this, we visited multiple websites relating to our specific interest
and automatically interacted with the pages to simulate human behavior. We
implemented multiple basic interaction strategies such as mouse movement,
scrolling, and clicking on internal links. For ethical reasons we wanted to avoid
clicking on external links as those could be advertisements triggering payment.

selecting interests. We used engagement planning as the theme for
all manual measurements to simplify the study instructions. For the automated
measurements, we selected three additional interests from the IAB’s content
taxonomy that browser profiles could be primed for. First, we selected weight
loss as a sensitive topic that pertains to the user’s medical history. Our
hypothesis here is that medical websites could be more likely to accept users’
privacy preferences. Second, we chose vaping as this interest is explicitly listed
as a sensitive topic in the IAB’s taxonomy (weight loss is only listed as “Special
Category Data”). Finally, we picked SUVs (sport utility vehicles) as a fourth
— more innocuous — interest that appeals to a wider audience.

determining interest-specific websites. We next determined
relevant websites for the chosen interests that could be visited for priming.
We utilized both large-scale web crawls as well as search engine results to pick
candidates.

To get a comprehensive picture of websites in the DACH area, we used the
Chrome User Experience Report dataset to obtain a list of 267k .de/.at/.ch
domains [31]. We then crawled the front page for each domain with a headless
Chromium instance and stored all HTTP request headers and the final page
text contents. Next, we systematically asked colleagues which terms they would
associate with our four interests and compiled lists of on average 20 relevant
keywords per interest. We additionally include relevant IDs from the IAB’s
content taxonomy. All page contents were then scanned using Hyperscan [32]
and we used human judgment to manually determine a threshold that would
qualify domains for being relevant to the given interest. A manual review of
selected websites revealed a false-positive ratio of less than 10%, i.e., the vast
majority of selected websites had a significant association with the respective
interest. However, one downside of this approach is that website popularity
is not taken into account, and websites in the long tail are overrepresented.
For example, of the 299 .de/.at/.ch domains associated with the engagement
interest, only 9 appear in the Tranco 1M toplist1.

1 The list we used is available at https://tranco-list.eu/list/6P7X.
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We complemented our web crawls with targeted search engine queries using
search terms proposed by colleagues during the keyword compilation. All
queries were executed on Google and Bing, which are the two leading search
engines in the DACH region (92% and 5% market share respectively). We
recorded the first 100 organic results for each query. We did not click on any
search advertisements for ethical reasons but added the respective websites to
our list.

instrumenting browsers To perform the browser profile priming
and the measurements, we built a custom browser runner utilizing Microsoft’s
Playwright browser automation framework [33]. We opted for this approach
as it allows us to instrument Google Chrome, Mozilla Firefox, Microsoft Edge,
and Safari browser instances, whereas OpenWPM [34] only instruments Firefox.
We did not use any browser’s headless mode. To hide our instrumentation
from anti-bot measures, we implemented basic cloaking mechanisms based
on Jonker et al. [35]’s analysis of fingerprinting techniques. We manually
verified that our modified browsers can pass openly available bot detection
tools such as Google’s ReCaptcha 3 when executed locally. However, we have
no reliable means to test if we are picked up by AdTech’s proprietary anti-bot
mechanisms.

measurement plans For each measurement, we defined a custom plan
which states its key attributes (see Listing 6.2 in the appendix for a full
example):

1. The location where measurements are done from.

2. The browser type and configuration (e.g., screen size).

3. The list of URLs and the page interaction strategy used for priming.

4. The list of URLs and the consent dialog interaction strategy for mea-
surements.

We then executed browser runners that performed all browser instrumentation
based on the assigned plan and uploaded raw results (DOM contents for all
frames, cookies, screenshots, ...) into S3 object storage.

measurement regions We performed measurements from three dif-
ferent locations: Amazon Web Service’s Frankfurt region, a cluster of virtual
machines at the University of Innsbruck, and physical laptops at the University
of Innsbruck. This is motivated as follows. Initially we intended to exclusively
use a cloud computing platform as this would have allowed us to obtain a fresh
IP address for each measurement. We considered this aspect to be important
not to get any cross-contamination between measurements. However, our
initial experiments yielded unsatisfactory results and we suspected that our
IP address ranges may be blacklisted by AdTech companies. This led us to
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Emulate User
Interaction

Use AdTech’s
JS API

{...} {...}
Track?

yes no

1. detect dialog
2. interact
3. screenshot

1. detect __tcfapi

2. getTCF state

3. log consent decision

Figure 6.4: We measure the accuracy of our consent dialog automation by instru-
menting websites on two different layers: First, we employ dialog-specific scripts to
spoof user interaction. Second, we simultaneously interact with the website’s TCF
API to get notified of the user’s decision from AdTech’s perspective. This allows us
to see if we instrumented the dialog correctly. We confirm inconsistent results with
human raters.

transition to local virtual machines which share the same IP address space as
students. As measurements still yielded unsatisfactory results, we suspected
advanced fingerprinting of the underlying Linux VMs and transitioned to
physical consumer laptops running Windows 10.

consent dialog automation On all pages we visited during the mea-
surement phase we either accepted or rejected the consent dialog. While this
task sounds straightforward, previous research had already demonstrated that
it is surprisingly complex to solve even for the much simpler case of accepting
dialogs [36]. In a measurement of 1426 websites, Matte et al. [6] automated all
steps but the dialog interaction, which was performed by human operators to
ensure its accuracy. As we set out to measure from cloud virtual machines, this
was not an option for us. We attempted to adapt the existing Consent-O-Matic
browser extension [37] for our use case but found its rule syntax to be too
inflexible for objecting to legitimate interests in more complex dialogs. Instead,
we re-crawled our list of 267k .de/.at/.ch domains to measure the popularity of
specific CMPs and implemented custom dialog automation scripts for the three
most popular CMPs (Quantcast, Sourcepoint, and OneTrust). To improve the
accuracy of our method, we visited 500 websites per CMP on which we exe-
cuted our dialog UI automation, and then simultaneously used AdTech’s TCF
JavaScript API (__tcfapi) to observe which decision is being communicated
to third parties (see Fig 6.4). In other words, we instrumented each CMP from
both the user and the AdTech side to detect mismatches between intended
consent action and result. These observations could then be used to improve
our automation and handle additional dialog configurations. We needed to
repeat this process multiple times until all mismatches were confirmed to be a
bug in the individual website itself and not in our instrumentation. In other
words, a manual dialog interaction produced the same (wrong) TCF consent
string on these websites.

measuring personalization Finally, we need automated means to
detect the presence of personalized ads on each page. To do this at scale we
used the list of keywords for each interest and counted their frequency on three
different parts of the raw results: First, the concatenated DOM contents of
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Date Measurement Fig. # websites CMPs

19.10.21 Dialog Automation Tests 6.6 3 000 3
19.10.–02.11.21 Cloud Measurements 6.7 36 000 3
09.11.–18.11.21 User Study 6.5 2 093 all
Nov. 21–Feb. 22 Local Measurements 6.7–6.8 72 000 3

Table 6.1: Overview of measurements made for this paper.

all frames on the page. Second, all HTTP requests and responses. Third, the
browser’s accessibility tree, which provides assistive technologies with textual
descriptions of the web page.2 We picked this differentiated approach to be
able to capture all indicators (on the HTTP level), but also to filter out noise.
For example, “Auto” — the German word for car — is not a useful indicator
on the HTTP level (it appears as a property in most CSS stylesheets), but its
presence in the accessibility tree is indicative of car ads. We then compute
a simple personalization metric for each page by counting the number of
matching keywords (each keyword is counted at most once per page). While a
more sophisticated approach — one could envision training a machine learning
model on screenshots in future work — would improve our results, the benefit
of the current metric is that it is very easy to reason about.

6.3.3 Research Ethics

In fulfillment of approved ethical standards, we clearly communicated that
participation in our manual measurement study was voluntary and anonymous.
Students were extensively briefed on the general tracking ecosystem as well
as the potential implications of participating in the study (see Listing 6.1).
Participants could withdraw from the study at any point in time.

A broader concern for both manual and automated measurements is that we
visit websites that include ads, which advertisers need to pay for. This problem
is not unique to our method but an inherent property of web measurements.
To limit the impact of our measurements, we did not interact with any of
the displayed advertisements and instructed students not to do so either. We
spaced out our measurements so as to not overload any servers. Considering
that we only crawled each website a handful of times, we believe that we do
not have significantly altered the economic ecosystem of the crawled websites.

6.4 results

We first describe the results from our manual measurement study, followed
by the results from our automated measurements. Table 6.1 explains which
measurements are used for the figures.

2 The output format for the accessibility tree is browser-specific, which needs careful consider-
ation when comparing results across browsers.
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Figure 6.5: Manual measurements made by students reveal a high intra-group
variance: While some students observed personalized ads on about 60% of the 50
websites they visited, about a third of students did not observe any personalized ads,
even though all of them accepted all tracking.

6.4.1 Manual Measurements

In total, we received 17 measurements from students in class and 27 measure-
ments from students at home. The increase in home measurements can be
explained by the fact that many students had commitments after the initial
lecture, but were still interested in seeing the effects of the priming personally.
Each measurement consisted of up to 50 websites. After removing incomplete
records, we record 2093 individual observations (Ø 47.6 websites/measurement).

The majority of students were Windows users (68%), followed by macOS
(18%), and Linux (14%). 55% used Google Chrome, 18% Mozilla Firefox,
16% Microsoft Edge, 9% Safari, and 2% Chromium. More than two-thirds of
students (73%) volunteered to use their existing browser profile, with many
being curious about how pervasive the tracking would be. Others created
a dedicated profile (16%) or used incognito mode (11%). Most participants
performed the priming in German (86%), all others used English search terms.

Our manual measurements revealed two key results. First, sending
negative privacy preference signals significantly reduces the number
of personalized ads that are seen. More concretely, we observe personalized
ads on on average 19.4% of websites when consenting to all data processing
(see Figure 6.5). This number drops to 3.5% when not providing consent
and 1.7% when objecting to legitimate interests. A Mann-Whitney U rank
test confirms that the difference between accepting and simple rejecting is
statistically significant, U(Naccept = 17, Nreject = 8) = 230, p < 0.05. Users
who do the extra work to object to legitimate interests see significantly fewer
ads (32% of websites) than those who only reject dialogs (52%), U(Nreject =

8, Nlegint = 19) = 22, p < 0.01.

Second, we observe a high intra-group variance when measuring
personalization. While some students that accepted tracking observed
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Figure 6.6: User action in the consent dialog vs. consent decision sent to AdTech for
the three leading consent dialog providers.

personalized ads on as much as 60% of webpages they visited, a third of the
students did not observe any personalization at all. This may be an indicator
that the observed results highly depend on the quality of the priming process
or that anti-bot measures play a significant role. Looking at the measurements
where students objected to legitimate interests, we find that some students
observed ads on more than 50% of the pages, but others saw ads on only 20% of
pages. The refusal to serve ads supports the hypothesis that anti-bot measures
may play a significant role. A chi-squared test confirms that the intra-group
difference in not observing ads is statistically significant for students who
objected to legitimate interests, χ2(18, N = 941) = 83.53, p < 0.01. Speaking
to our hypothesis in Section 6.3.1 that concentrated activity from the same IP
range may have distorted results, we find no statistically significant evidence
that the measurement location had an effect on any treatment.

6.4.2 Automated Measurements

We first present results relating to the behavior of consent dialogs and then
discuss the observed personalization from our automated measurements.

consent dialog settings When testing our consent dialog automa-
tion, a surprising result for us was that (from their looks) identical consent
dialogs would communicate different consent decisions to AdTech partners
(see Figure 6.6). To make sure that these deviations are not an artifact of our
automation, we manually confirmed all cases. In direct violation of the TCF’s
policies, we found that 16.7% of websites using Sourcepoint’s dialog and 11.5%
of websites using OneTrust’s dialog do not provide European users with any
means to object to legitimate interests. For 11.9% of Sourcepoint’s and 10.8%
of OneTrust’s consent dialogs, we did not receive a consent signal via AdTech’s
JS API when trying to reject tracking. This was either because the dialog
did not provide a reject option at all, or in a few cases because the website
did not notify third parties that the user objected to legitimate interests3.

3 This behavior was likely well-intentioned. Some websites independently set an additional
opt-out cookie to not include the CMP’s JavaScript on subsequent page loads. The problem
with this approach is that objection to legitimate interests becomes impossible.
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Figure 6.7: Observed ad personalization metrics for measurements made by different
setups. The red bars represent the unpersonalized baseline, i.e., the average number
of matching keywords in HTTP traffic if the browser profile has not been primed.
In all cases, the actual personalization effect — the difference between the red and
green bars — is small.

We also found a surprising amount of Sourcepoint dialogs (3.6%) which were
misconfigured to the extent that clicking “Accept all” (or a variation thereof)
resulted in a negative consent signal. We can also report encouraging results
in that 21.3% of OneTrust customers and 8.5% of Sourcepoint customers
actively prohibit third parties from using legitimate interest as a legal base for
processing, even if the user accepts all tracking.

observed personalization While our manual measurements show
strong personalization effects after priming, the same unfortunately cannot
be said about our automated measurements. Recall that our personalization
metric counts the occurrence of keywords associated with the primed topics.
The red bars in Figures 6.7 and 6.8 represent the non-personalized baseline
(keywords matching by chance), and the difference between grouped red and
green bars describes the personalization effect (we give full consent in both
cases). Looking at Figure 6.7, we see a negative personalization effect on
cloud-hosted virtual machines (this effect is statistically significant). In other
words, if we first visit websites related to engagements, we are less likely to
observe related keywords on subsequent generic page visits.

Why is that so? Our best explanation for the decrease in matching keywords
is that the priming process triggers anti-bot measures, which then affect the
measured sites. The effect is consistent across time of day, day of measurement,
and browsers. Each measurement was done on a new virtual machine with a new
IP address so that we can exclude cross-contamination between measurements
as a contributing factor. The decrease in keywords is also consistent across
primed interests and priming strategies. This makes us assume that it’s
primarily based on a combination of IP address reputation and fingerprinting
techniques.

Switching to local virtual machines with constant University IP addresses,
we find that keywords are 21% more likely to appear, but we also see a
similar increase for the unprimed case. This may be because some advertisers
personalize based on IP addresses and not based on cookies, or because the IP
address range we are crawling from is generally seen as more trustworthy, which
results in more ads being served. Using physical laptops yields another 27%
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Figure 6.8: Observed ad personalization metrics for measurements made by different
browsers from the “University Laptop” setup.

increase, which strengthens the hypothesis that anti-bot measures significantly
influence results. However, we still observe almost no effect from priming on
personalization.

Turning to Figure 6.8, which only considers the measurements on physical
laptops, we find that the choice of browser also significantly impacts measure-
ments from the same devices. Most strikingly, we observe 50% fewer keywords
in Mozilla Firefox. Again, the impact of browser choice seems to be much
more significant than the impact of our actual priming process. We discuss
implications in the next section.

6.5 discussion

Section 6.5.1 discusses our measurement methodology. Section 6.5.2 discusses
implications for privacy policy.

6.5.1 Methodological Implications

consent dialog automation As more websites delay loading third
parties until the user made a consent decision, privacy web measurements need
to implement consent dialog instrumentation to observe all tracking [36]. This
task can be done manually with human operators [6], which covers arbitrary
websites and ensures high accuracy, but does not scale well. Alternatively, Jha
et al. [36] proposes the use of generic heuristics to accept dialogs, trading off
accuracy for scalability. Finally, custom scripts developed for specific dialog
implementations can provide both scale and accuracy, but do not cover all
websites. We think this approach is most suitable for measurements like ours.
By focusing on the three most popular CMPs, we automate 53% of DACH
websites implementing TCF with much higher reliability compared to existing
work. For example, Jha et al. [36] report that Consent-O-Matic achieves a
24% dialog acceptance rate for 100 randomly picked German websites. Their
Priv-Accept extension is successful on more than 50% of websites but only
supports accepting dialogs. In contrast, we were able to iteratively tweak our
instrumentation based on the feedback we received via TCF’s AdTech API
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(see Figure 6.4), which yields a 98.5% success rate for accepting dialogs of the
specific CMPs (see Figure 6.6).

We note that all automation approaches require continuous adjustments
and revalidation as dialogs change over time. Hils et al. [38] observed 38
changes to only Quantcast’s dialog over the span of three years.

browser choice We find that the choice of browser has a significant
influence on the observed personalization metrics, which is in line with existing
research [39]. The significant decrease in keywords for our Firefox instances
indicates that they are easily detected by anti-bot measures despite our at-
tempts at concealing them. We do not know the exact root cause, but it may
not be a coincidence that this affects the browser that is very commonly used
for instrumentation. For example, OpenWPM uses Firefox exclusively [34].
In contrast, Safari/WebKit is rarely instrumented, but it is the only browser
where we observe a notable priming effect. This reaffirms the importance of
using different browsers for measurements, at least when looking at ecosystems
where anti-bot measures are popular. We simply wouldn’t have noticed the
missing keywords had we only instrumented Firefox.

measuring priming efficacy In the first part of this study, we
planned to measure how variables such as the data source for interest-specific
websites (keyword search vs. crawl), the number of visited pages, or the page
interaction strategy would influence the efficacy of the priming process. A key
problem we encountered here is that (1) reusing our own IP address introduces
cross-contamination, but (2) many advertisers block the IP address space of
cloud providers. Future research will need to either accept cross-contamination
for measurements (and not make strong statements on priming efficacy) or
obtain access to a large number of reputable IP addresses.

measuring (effects on) personalization While we planned to
measure the effect of consent signals on personalization, we must concede that
our automated measurements failed to capture the underlying personalization
effect in the first place. We could of course easily report statistically significant
results with a bit of cherry-picking, but the effect size simply does not compare
to what we observed in our manual user study. As such, one needs to exercise
caution in drawing conclusions from the data. AdTech’s anti-bot measures
provide no direct feedback by design, which makes it easy to miss vital
factors such as the Firefox issues we described above. Performing manual
measurements as a comparison baseline is a good practice in this context.

As part of this research, we learned that AdTech by nature is highly
adversarial when it comes to web measurements. Ad fraud is a widespread phe-
nomenon [40], and vendors have rightfully deployed extensive countermeasures
that also affect researchers. Again, manual measurements offer a pragmatic
recourse.
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6.5.2 Privacy Implications

impact of privacy preference signals Even though enforcement
of the GDPR is often criticized as lacking [5, 41], our manual measurements
show that most websites respect users’ choices nonetheless and stop showing
personalized ads when no consent is given. This is an encouraging result, but
it should be celebrated with caution. With current consent rates of above 90%
(see Section 6.2), it may make little sense for AdTech to not respect preference
signals, because the risk of non-compliance outweighs the profit that could be
gained from the small minority of users who do not give consent. A similar
argument was already brought up by Szoka [42] in discussions about DNT:
AdTech may tolerate a small number of “free-riders” as long as it does not
exceed their “maximum acceptable loss threshold.” This hypothesis is further
supported by our observation that many websites stop showing advertisements
altogether when the user objects to legitimate interests, a right that we estimate
is only exercised by a tiny fraction of users. Once regulators start to enforce
the GDPR’s mandate that consent dialogs need to make withdrawal as easy
as giving consent [13, Art. 7], we may observe a shift in AdTech’s behavior.
It would be surprising to see AdTech liberally employ dark patterns in their
consent dialogs, but then behave in an exemplary manner when it comes to
respecting preferences.

effectiveness of soft privacy Measuring the presence of person-
alized ads as done in this paper can only catch some forms of non-compliant
behavior. All data processing that is done for purposes other than advertising
remains out of view. It may be tempting to advocate for solutions from the
domain of hard privacy instead, for example blocking third-party cookies by
default. However, we already see advertisers circumventing this approach
with first-party cookie syncing [43, 44]. It remains doubtful whether stricter
measures could comprehensively prevent tracking, at least without breaking
a significant fraction of the existing web. In this context, we see soft pri-
vacy technologies as a necessary complement. However, they require effective
enforcement to not be ignored by others.

practical enforcement While we are happy that most personalized
ads disappear with negative consent signals, some unwanted personalization
remains. This brings up the question of what should be done about noncom-
pliance. Unfortunately, a foundational problem here is attribution. While our
manual study provided us with screenshots of each offending ad, it’s likely that
neither the website owner nor the company providing the ad contents is directly
to blame for illegal targeting. s Determining which specific AdTech vendor is
misbehaving requires manual detective work, for example by looking at the
underlying HTTP traffic. This process is further aggravated by the fact that
presumably personalized ads may have been a coincidence, and we need statis-
tical evidence to not end up chasing ghosts. Our automated measurements
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would have provided a basis for this direction but failed to capture the desired
effects. This leaves this part of the paper with a meta result: Measuring the
impact of privacy preference signals at scale is a very hard problem to solve.
This is bad news for privacy advocates and data protection agencies, who
need to rely on laborious manual methods to keep tabs on AdTech. A possible
way forward would be to mandate transparency for targeting decisions. For
example, AdTech could provide audit APIs to disclose why particular ads are
shown to users.

cmps violating tcf policy As part of our automated measurements,
we found that Sourcepoint and OneTrust allow their customers to hide the
opt-out button for legitimate interest in their consent dialogs. This option —
used by more than 10% of each companies’ customers — is a direct violation of
TCF’s own policies [45, Chapter II 5(4) and Appendix B]. This raises questions
as to whether the IAB is following its pledge to “take reasonable steps to
periodically review and verify a CMP’s compliance” [45, Chapter II 9(1)].

6.6 conclusion

We perform manual and automated measurements to test whether the privacy
preferences stated in a consent dialog influence the observed personalization
of ads on the web. We find that most websites stop showing personalized ads
when no consent is given. However, the difficulties faced in automating our
measurements show that compliance detection is hard to scale. This threatens
the efficacy of the TCF privacy preference signal. If more users are enabled
to make use of their rights, AdTech vendors will be increasingly tempted to
ignore negative consent signals.
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appendix

Listing 6.1: Study Briefing Document (2 pages)

Consent Management Experiment

MAXIMILIAN HILS, UIBK SECURITY AND PRIVACY LAB

If at any point you have any questions about the study, please reach out tomaximilian.hils@uibk.ac.at.

1 STUDY OBJECTIVE
The objective of this study is to determine whether accepting or rejecting cookies has an influence
on the advertisements that are shown onwebsites.Wewant to test how providing consent influences
the amount of personalization seen in ads.

2 RESEARCH ETHICS
Participation in this study is voluntary. All data you submit will be published as supplementary
material of the research paper documenting this study. You may withdraw from the study at any
point in time and delete the data you have submitted so far.
As part of this study, you will be asked to visit websites that relate to engagement planning. Due
to the pervasiveness of adtech tracking, your partner or other members in your household may
see wedding/engagement-related advertisements on their devices in the next few days. If this is
uncomfortable for you, do not participate in this study.
As part of this study, you will be asked to submit website screenshots. These screenshots contain
advertisements, which may show contents related to your personal interests. You may skip any
screenshot you do not wish to share.

3 STUDY DESIGN
This study consists of three parts. First, youwill setup your browser to be ready for themeasurements.
Second, you will prime your browser profile cookies by visting websites that relate to engagement
planning. Finally, you will visit websites randomly drawn from the most popular websites in Austria
and measure if there are advertisements relating to this topic.

3.1 Setup
(1) Decide which browser and browser profile you want to use. To increase the accuracy of

our study, we would appreciate if you could use your normal browser profile (which already
carries cookies that are associated with human-like behavior), but you may also create a
new browser profile if you are uncomfortable with using your normal profile.1 Unless you
are using Safari, please create a profile and do not use incognito mode. Incognito mode is
commonly detected by advertising companies. You can delete the profile after completion.

(2) Deactivate all adblocking and anti-tracking browser extensions.
Disable your VPN if you use any.

1Chrome/Edge: Start Chrome and click on the user icon in the top right. Firefox: Enter about:profiles in the URL bar.
Chromium: chromium --user-data-dir=/tmp/chrome Safari: Not possible, use incognito mode instead.

Author’s address: Maximilian Hils, UIBK Security and Privacy Lab, maximilian.hils@uibk.ac.at.
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2 Maximilian Hils, UIBK Security and Privacy Lab

3.2 Priming Phase
Start priming the browser profile for ten minutes:

(3) Pretend to be someone who is planning to propose to their significant other. Search
for engagement rings, diamonds, proposal tips, wedding things, and so on to make advertis-
ers believe that you are interested in this topic.
• Do everything in German if possible, otherwise in English.
• If you encounter any cookie prompts, accept them.
• Make sure that you actively engage (scroll, click around, search on site, ...) with websites
for more than a few seconds. This is a common method to detect bots.

• You may also improve priming by including searches on Instagram/Facebook/etc.
• Please do not click on advertisements.

3.3 Measurement Phase
We want to measure whether your priming has an impact on the ads you are seeing now.
Take the last digit of your matriculation number. If it is a...

• 0, 1, or 2: You are lucky: Your strategy will be to accept all cookie dialogs in this phase.
• 3, 4, or 5: Your strategy will be to reject all cookie dialogs in this phase, but not object to

legitimate interests. This is typically done by clicking a “Reject All” button in the dialog (if
one exists), or by clicking “More Options” and then something like “Save & Exit”. Imagine
a regular human being who does not want to be tracked, but also wants the dialog to go
away.

• 6, 7, 8, or 9: Your strategy will be to reject all cookie dialogs and object to all data processing
based on legitimate interest (“Berechtigtes Interesse”). In other words, you want to exercise
the maximum amount of privacy options available to you. This often means clicking “More
Options”, then searching for a legitimate interest button, and then manually objecting to
each purpose.

For simplicity, you perform the same action (either accepting or rejecting cookies) on all webpages.
Next, do the following:

(4) Open https://uploads.hi.ls/2021-11/consent-exercise.html and select the correct sheet.
(5) Take the first participant ID where no measurements have been entered yet.
(6) Enter your metadata (browser, operating system, primary language) into the first row

with your participant ID.
(7) Visit each website listed under your participant ID:

(a) Complete the consent dialog if it exists and if your action is possible (some dialogs
have no reject button – don’t do anything then if you are in one of the reject groups).

(b) Check if there are advertisements, and if they are personalized.
(c) Make a screenshot of the browser window if (and only if) there are personalized ads,

i.e., ads related to engagement/marriage things.2 In the spreadsheet, at the very bottom,
select the sheet belonging to your participant ID and upload the screenshot there.

(d) Enter your observations into the spreadsheet.

After completing the measurement phase, make sure to reactivate your adblocking browser exten-
sions. Thank you! :-)

2Windows/Linux: Focus the browser window, press Alt+Print (Alt+Druck). The screenshot is now in your clipboard,
and can be pasted into the spreadsheet. macOS: Press Shift, Command, and 4. In the spreadsheet menu, click Insert, then
Image, and select the screenshot file on your desktop.
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Listing 6.2: Measurement Plan Example

{
"version": 2,
"id": "test/paper-example", // unique measurement ID
"region": "aws/eu-central-1", // runner location

// browser configuration
"device": {

"type": "chromium",
"options": {

"headless": false,
"channel": "chrome", // use official Google binaries
"userAgent": "[...]",
"viewport": {

"width": 1536,
"height": 763

}
}

},
"locale": "de-DE,de;q=0.9,en-GB;q=0.8,en;q=0.7",
"timezone": "Europe/Berlin",
"concurrency": 2, // number of parallel tabs

// measurement strategy
"prime": { // visit engagement-related .de/.at/.ch URLs

"urls": {
"collection": "engagement_dach",
"pages": 25

},
"strategy": "idle" // scroll, browse, ...

},
"measure": { // visit domains with supported CMPs

"urls": {
"collection": "cmp_dach",
"pages": 50

},
"strategy": "consent_reject" // accept, idle, ...

},

// result storage (S3)
"log": {

"screenshot": "full", // including scrolling
"contents": true, // final rendered DOM tree
"cookies": true, // browser profile cookie jar
"accessibility_tree": true,
"har": true, // HTTP Archive
"console": true // JavaScript console output

}
}
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abstract

Privacy preference signals allow users to express preferences over how their
personal data is processed. These signals become important in determining
privacy outcomes when they reference an enforceable legal basis, as is the case
with recent signals such as the Global Privacy Control and the Transparency &
Consent Framework. However, the coexistence of multiple privacy preference
signals creates ambiguity as users may transmit more than one signal. This
paper collects evidence about ambiguity flowing from the aforementioned two
signals and the historic Do Not Track signal. We provide the first empirical
evidence that ambiguous signals are sent by web users in the wild. We also
show that preferences stored in the browser are reliable predictors of privacy
preferences expressed in web dialogs. Finally, we provide the first evidence that
popular cookie dialogs are blocked by the majority of users who adopted the
Do Not Track and Global Privacy Control standards. These empirical results
inform forthcoming legal debates about how to interpret privacy preference
signals.
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7.1 introduction

Privacy laws like GDPR and CCPA empower users, at least in theory, to control
how their personal data is processed. To do so, individuals must be able to
communicate their privacy preferences with data controllers. A web standard
for communicating privacy preference signals would make this convenient and
easy. However, the literature suggests coordinating senders and recipients to
adopt one standard has failed multiple times due to the competing interests of
stakeholders [9]. The same competing interests lead stakeholders to propose
different signals, leading to the coexistence of multiple signals. Users may
transmit more than one signal and thereby express conflicting or ambiguous
preferences, which creates uncertainty over which legal rules apply.

Multiple signals can be sent when signals are collected at different technical
layers. In this study, we focus on the two dominant ways for users to express
privacy preferences: on individual websites and globally in their browser. The
first approach is chosen by the Transparency & Consent Framework (TCF),
a standard developed by the Interactive Advertising Bureau and adopted
by hundreds of ad-tech vendors and thousands of websites [15]. The second
approach was chosen by the Do Not Track (DNT) mechanism [17] and also
the Global Privacy Control (GPC), which now boasts over 40 million users [6].

The possibility of users sending multiple signals raises questions about legal
interpretation under both the CCPA and the GDPR. Such questions can only
be answered by legal analysis. Such scholarship would be supported by first
establishing which signals users send in the wild, the problem addressed by
this paper. We observe 16k impressions on websites that embed TCF dialogs
and simultaneously detect the presence of a DNT and/or GPC signal.

Our results uncover a number of sources of ambiguity not previously
identified in the literature. First, an industry standard dialog for collecting
TCF signals is blocked by 27% of users, and this percentage rises to 50%/73%
of users with DNT/GPC turned on. Second, users who send a GPC signal are
two times more likely to withhold consent than other users, which suggests
the signal captures genuine privacy preferences. Finally, even though they are
more likely to not give consent, 73% of users with GPC turned on still consent
to being tracked by clicking “I Accept” in a TCF consent dialog. This shows
that conflicting signals are a reality.

Section 7.2 provides background on relevant laws and signals. Section 7.3
describes our research design. Section 7.4 presents the results. Section 7.5
discusses the results and suggests directions for future work. Section 7.6
concludes the paper.
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7.2 background

We split the background into laws and privacy preference signals.

privacy laws The two laws most relevant to privacy preference signals
are the General Data Protection Regulation (GDPR) and the California
Consumer Privacy Act (CCPA). Article 6 of the GDPR [24] establishes a
number of legal bases for processing personal data, of which (opt-in) consent
is the most common legal basis claimed in a sample of hundreds of AdTech
vendors [16, Fig. 2]. Article 4 of the GDPR [24] defines consent as any freely
given, specific, informed and unambiguous indication of the data subject’s
wishes.

Taking a different approach to opt-in consent, the CCPA establishes “the
right to direct a business to not sell consumers’ personal information” [26, p. 15].
For the purposes of this paper, it is important to note that both laws link the
legality of data processing to the privacy preferences of users, creating a need
for signals that communicate preferences. However, neither law anticipates
the ambiguity resulting from one user sending multiple signals with differing
semantics.This is made possible by the decentralised Web ecosystem in which
multiple actors and institutions design and propose privacy preference signals,
which is described in the following.

privacy preference signals Hils et al. [9] identify five signals that
have been adopted at various points in the last 20 years. We ignore P3P
because it was deprecated in 2017 and ignore NAI opt-outs as they remain
an unpopular and narrow signal [5]. We focus on the remaining three signals.
DNT and GPC have a similar technical design in that they extend HTTP
headers by a single bit signal, but they differ in semantics. The law does
not require recipients to respect DNT, and many ad-tech companies in fact
decided to ignore the signal [26, p. 15]. Nonetheless, it can still be turned on
in Chrome’s and Firefox’s settings dialog. In contrast, the Global Privacy
Control is designed to trigger the “Do Not Sell” clause (the aforementioned legal
right [26, p. 15]) under the CCPA. It also provides a possible interpretation
under the GDPR in its specification. However, major browsers have not
adopted GPC yet outside of browser extensions.

The third signal, the TCF, is collected via dialogs embedded in the webpage.
TCF signals can only be collected by registered intermediaries, of which
QuantCast and OneTrust are the most popular [9]. The semantics of this
signal are much more complex [16, 22] but revolve around opting-in to various
data processing purposes where consent is required. We discuss the nature of
the ambiguity resulting from sending DNT/GPC opt-outs and TCF opt-ins in
Section 7.5.

Finally, it is worth noting that niche and emerging signals exist that we
did not consider. Do Not Sell signals can also be collected via webpages and
stored as cookies, which use the standardized US Privacy String format [12].
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Figure 7.1: Our Consent Dialog Measurement Pipeline

These cookies were successfully reset using the OptMeowt add-on for 17 of 30
websites in a recent study [26]. A technical specification for the Advanced Data
Protection Control [10] was proposed that could automatically send privacy
preference signals including TCF and Do Not Sell, but does not define any
new signals in terms of semantics.

7.3 method

To examine the interplay between privacy preference signals, we embedded
Quantcast’s cookie consent dialog on the landing page of three websites for a
short period of time and also logged visitors’ DNT/GPC headers. In constrast
to previous research [8], we not only measure a user’s decision when they are
presented with a TCF consent dialog, but also if they are shown a consent
dialog at all. This is important as our findings indicate that a non-negligible
number of users employ techniques that block popular consent dialogs entirely.

study participants We sampled a very technical audience on all three
websites. The majority of our measurements were made on mitmproxy.org, the
website of an open-source program primarily used by software developers (72%
of all impressions) [4]. Additionally, our research group’s website and the web-
site of a Capture The Flag contest we hosted contributed 14% of observations
each. Note that all numbers in this paper are reported as impressions of the
landing page. We do not perform any additional grouping to not overrepresent
users who employ additional privacy measures (such as clearing cookies). In
total, we observe 16,761 impressions by 8,033 IPv4 addresses from 7,432 /24
subnets.

In terms of browsers used, 53% of visitors used Chrome/Chromium, 23%
Firefox, 9% mobile browsers, 8% Safari, and 4% Edge. For comparison,
Wikimedia reports 55% Chrome, 13% Firefox, 10% Safari, and 8% Edge on
their desktop sites (June 2021).
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data collection During our study period we embedded a logging script
on all three websites and recorded the following data (see Figure 7.1):

1. the user’s browser and whether they sent a GPC/DNT header;

2. state transitions from the browser’s page visibility API;

3. whether Quantcast’s dialog could be loaded.

If loading the dialog was successful, we additionally recorded:

4. Quantcast’s assessment of whether GDPR applies to the current user;

5. existing consent decisions from previous visits;

6. the user’s (new) consent decision when a dialog is shown.

To determine whether Quantcast’s dialog can be loaded, we manually inject
its main script tag and add load and error event listeners. We cannot detect
what prevents this resource from loading, but we suspect that the majority is
via ad-blocking browser extensions and DNS-level content blockers.

If Quantcast’s JavaScript code could be loaded successfully, we interact
with their implementation of the TCF API to determine if GDPR applies to
the current user. We only show dialogs to users in the EU, which is Quantcast’s
default setting.

If we find that GDPR applies, we present the user with a dialog (see
Figure 7.3) unless a decision has already been made. We track prior decisions
via a cookie set by the dialog. This means the individuals behind the decisions
are unique to the extent these cookies are preserved. In total, a consent dialog
is only shown for 14% of impressions.

To get a more accurate picture of the user’s interaction with the web page,
we observe the browser’s page visibility API, which emits visibilitychange

events when the page becomes visible, hidden, or closed. We use the Beacon
API (navigator.sendBeacon) to record all events as this interface still works
when the page is closed. As of 2021, both APIs are available in all major
browsers. We discard all measurements for which we did not receive a complete
set of events. This also reduces the impact of general network problems, which
otherwise may be misattributed as blocking.

research ethics Our research design requires ethical consideration as
each dialog takes user time. Given thousands of websites already impose these
dialogs on users [15], we judge that the time cost is outweighed by the value
of information derived from our study in shaping the design and adoption
of these dialogs. Previous research has shown that Quantcast’s dialogs are
completed in 3.2s on average [8]. While our institution does not require IRB
review for minimal risk studies, we ensured that we did not deceive or harm
website visitors and their privacy. All displayed consent notices functioned as
described and respected the visitor’s choice.
Explaining the research purpose before/after the experiment would lead to a
much longer interruption than the initial dialog.
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Figure 7.2: The majority of users who have GPC turned on (bottom pair of bars)
outright block consent dialogs. Those who do not block are relatively more likely to
reject tracking when presented with a dialog offering equal choice. Still, the majority
of GPC users click “Accept” and thus send an ambiguous signal. The top pair of
bars show the baseline without browser-based privacy signal. The deprecated DNT
signal (middle) was more prevalent than GPC, exhibited less extreme blocking, and
a similar behavioural response.

7.4 results

We split our results into two aspects of ambiguity, namely blocked dialogs and
multiple signals, and then consider robustness.

blocked dialogs The top bars in Figure 7.2 show that collecting a TCF
signal via a dialog is non-trivial. The default version of the market-leading
dialog does not load for 27% of users, which rises to 50%/73% of users with
DNT/GPC enabled. This technical response—blocking the privacy preference
communication channel—was not previously considered in the literature.

multiple signals The second source of ambiguity results from users
sending multiple signals simultaneously. First, 3.5k/550 of impressions send
a DNT/GPC signal respectively. All but three of the GPC impressions also
send a DNT signal so we do not further differentiate. Displaying a TCF dialog
to these impressions creates the potential for a conflict, namely when users
send an accept TCF signal while also sending a DNT/GPC signal. Such
a conflict occured for 5% of all impressions, or 77%/73% when looking at
DNT/GPC-enabled users only. We discuss the nature of the ambiguity later
in the paper.

The co-existence of these signals does not only increase ambiguity as the
DNT/GPC signals have explanatory power over privacy preferences expressed
via the TCF signal. Users with DNT/GPC enabled were 1.9/2.0 times more
likely to click “I do not accept” on the TCF dialog than those without. These
results are significant at the p < 0.01 level for DNT and p < 0.05 for GPC.
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Note we cannot reject the null hypothesis that DNT/GPC are drawn from the
same distribution (χ2(1, N = 346) = 0.07, p = 0.80).

robustness We run a number of checks to reduce the risk of spurious
findings. It could be that GPC adoption was driven by browsers and browser
extensions turning it on by default, as it was done by Brave browser [23].
In our sample, Firefox users are most likely to send a GPC signal (8.9%),
followed by Chromium (2.3%) and Edge (1.6%). The share of GPC signals
from other user agents is statistically zero. Note that Chromium includes
Chrome, the most popular browser on the web, as well as Brave, a niche
browser catering pro-privacy and cryptocoin-savy users, which identifies as
Chrome in the user-agent string. To our knowledge, at the time of our study
Brave was the only browser that sent GPC signals by default without asking
the user. While we suspect that a number of the Chromium cases with GPC
turned on do originate from Brave, the fact that other browsers emit more
GPC signals, in both relative and absolute numbers, reassures us that the
results are not purely driven by a single browser’s default setting. The finding
that users who emit DNT or GPC signals tend to chose more privacy-minded
TCF options corroborates the behavioral interpretation.

7.5 discussion

We discuss how to collect preferences, the nature of the ambiguity, and the
validity of our results.

collecting preferences Research into GDPR cookie consent di-
alogs consistently shows that dialogs contain dark patterns that erode user
autonomy [3, 1, 25, 14, 13, 19, 20, 7]. Our findings could be interpreted as
further evidence that industry standard dialogs lead users to express untrue
preferences. For example, 77% of DNT-enabled users accept data processing
in a TCF dialog despite sending a global “Do Not Track” signal.

On the other hand, one could argue that the browser-controlled signals do
not capture the true preferences of users. For example, Brave browser turns
the signal on by default and does not provide an off-toggle [23]. The lack of
an off-toggle goes even further than Microsoft’s decision to turn DNT on by
default in 2012, which led an AdTech industry group to withdraw from the
DNT initiative [11]. This argument is undermined by new counter-arguments
found in the the CCPA, which establishes that “affirmatively choosing products
or services with privacy-protective features. . . is considered a sufficiently clear
manifestation of opting out” [26].

This argument may not apply in jurisdictions outside of California. Consider
that general purpose technologies like browsers contain multiple features.
Users may adopt such technologies for any combination of these features,
and so the browser may not have been chosen for the privacy features. For
example, in addition to Brave containing “privacy-protective features”, it also
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contains features beyond privacy protection (e.g., cryptotokens) that change
the distribution of advertising revenues. Products and services with a narrow
range of privacy relevant features, such as browser add-ons like Privacy Badger,
may be more reliable indicators of a user’s underlying privacy preferences.

Regardless of how the GPC signal is set, we have shown it explains a
significant portion of the variance in expressed privacy preferences, which
motivates further research into permanently storing privacy preferences in the
browser. In particular, browsers could think about collecting more than 1 bit
from users (0 bits in the case of Brave) given this information must apply across
a range of jurisdictions. Taking Colorado’s new privacy law as an example,
the 1bit GPC signal has to cover not only the “Do Not Sell” clause but also
opt-in consent for storing sensitive data. While arguments can be made for
how to interpret GPC’s single bit under each law, the ambiguity could be used
by AdTech firms to interpret the signal in their own interest or even request
additional signals to ‘clarify’ the situtation, which imposes yet more decision
burden on users.

Our findings suggest an alternative way forward to protect user privacy, at
least for opt-in consent. Unlike opt-out signals which default to tracking, opt-in
requirements force data processors to collect a privacy preference signal before
processing personal data. If browsers block the interface collecting preferences,
such as dialogs embedded in web-pages, then firms have no legal basis under an
opt-in requirement. This is particularly relevant given a back-of-the-envelope
calculation reveals that users have already wasted at least 2, 500 years [9]
sending TCF signals. This will likely invoke counter-measures from websites
leading to an arms race [18].

ambiguous signals Two sources of ambiguity we identified, namely
blocking dialogs and multiple signals, are particularly relevant for the GDPR
where many data processors [8] rely on an “unambiguous” [Art. 4][24] opt-in
consent as a legal basis. Blocked dialogs should be resolved in favour of the
user not having provided consent. Multiple signals are less easily resolved and
may require focusing on the semantics of each signal. For example, the DNT
signal “represents a superset of what is covered by Do Not Sell” [26, p. 15]
and so is a less ambiguous objection to some of the TCF’s data processing
purposes.

While many resolution approaches are conceivable (e.g., most/least privacy-
minded, temporal or normative order, user intervention), we defer this question
to legal analysis with the Blogosphere providing preliminary arguments [2, 21].
The same sources of ambiguity will likely be resolved differently in non-EU
jurisdictions. This creates a technical problem for firms processing data from
users across multiple jurisdictions—firms must infer each user’s jurisdiction.
Could privacy aware users masquerade as residents of the jurisdiction with the
strongest privacy rights?

Going beyond ambiguity, users can send two conflicting signals expressed
under the same standard when both the webpage and the browser collect
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preferences. For example, this could occur with the proposed ADPC signal
[10] if a user clicked “I accept” in the TCF consent dialog while sending a “No
consent under TCF” ADPC header.

validity We argue that our study has high ecological validity in that
we chose the most popular dialog on the Web [9] and displayed it to users
browsing a real website. Unfortunately, we could only present this design
to the users of three websites, all of which likely over-sample privacy aware
and technically literate users. The majority of our participants visited the
website of an open-source program targeting developers, and the remaining
from our research group’s webpages. Future work could embed the same study
in a broader range of websites. In fact, our ‘experiment’ could be carried out
passively by any website collecting TCF signals.

7.6 conclusion

We present first evidence that websites do receive ambiguous privacy preference
signals, namely opt-in TCF signals sent alongside a GPC opt-out signal.
Moreover, the share of ambiguous privacy signals due to blocked TCF dialogs
is significant. Both phenomena have been overlooked in the empirical literature.
Finally, our study suggests that user adoption of the GPC helps to explain
privacy preferences, and is associated with a greater propensity to reject
consent.
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Figure 7.3: Quantcast’s TCF cookie dialog used in this study. Note that we
used Quantcast’s default configuration, which renders the “I accept” button more
prominently and thus does not provide an equal choice.
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